## SPONSORS AND ORGANIZERS ISBN: 978-8-3503-0836-5 Part Number: CFP24ICE-ART © Copyright 2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to use any copyrighted component of this work in other work must be obtained from the IEEE. #### © 2024 IEEE #### 2024 IEEE Congress on Evolutionary Computation (CEC) © 2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Additional copies may be ordered from: **IEEE Service Center** 445 Hoes Lane Piscataway, NJ 08855-1331 USA +1 800 678 IEEE (+1 800 678 4333) +1 732 981 1393 +1 732 981 9667 (FAX) email: customer-service@ieee.org Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the percopy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2024 by IEEE. IEEE Catalog Number: CFP24ICE-ART ISBN: 979-8-3503-0836-5 ## **Table of Contents** | IEEE WCCI 2024 Welcome Message | 4 | |-----------------------------------------------------|-----| | IJCNN 2024 Welcome Message | 6 | | IEEE CEC 2024 Welcome Message | 7 | | FUZZ-IEEE 2024 Welcome Message | 9 | | Access the IEEE WCCI 2024 Web App | 11 | | IEEE-CIS Organization | 12 | | INNS Organization | 13 | | IEEE WCCI 2024 Organizing Committee | 15 | | Reviewers | 19 | | Venue Map | 36 | | Poster Layout | 38 | | IEEE WCCI 2024 Sponsors | 39 | | WCCI Plenary Speakers | 41 | | Keynote Speakers | 45 | | Online Invited Speakers | 56 | | Workshops | 57 | | Competitions | 66 | | Panels | 68 | | IEEE CIS Student and Early Career Mentoring Program | 75 | | IEEE CIS Young Professionals | 75 | | Tutorials | 76 | | Technical Content | 116 | | June 30, 2024 | 116 | | July 1, 2024 | 119 | | July 2, 2024 | 140 | | July 3, 2024 | 157 | | July 4, 2024 | 171 | | July 5, 2024 | 187 | | Author Index | 199 | #### **IEEE WCCI 2024 Welcome Message** Let's celebrate the 30th anniversary of IEEE WCCI! On behalf of the WCCI 2024 Organizing Committee, we are delighted to invite you to Yokohama, Japan, for the 13th biennial "IEEE World Congress on Computational Intelligence - WCCI 2024" of the Computational Intelligence Society (CIS) of IEEE, the world's largest technical professional organization. The conference will take place from June 30th to July 5th, 2024, at PACIFICO Yokohama, one of the largest convention centers in Japan. It is the IEEE CIS flagship conference of more than 2,500 esteemed scientists and professionals in the fields of neural networks, fuzzy systems and evolutionary computation worldwide. It enthusiastically contributes to exchanging views, sharing experiences and mixing young and young-at-heart scientists, by opening new perspectives for research and development in academy and industry. IEEE WCCI started in 1994 in Orlando, Florida, USA, to enhance the interdisciplinary discussion and cooperation by calling together the people in neural networks, fuzzy systems, evolutionary computation and related computational intelligence areas. At the beginning, it was a quadrennial event, with annually held individual conferences, namely, International Joint Conference on Neural Networks (IJCNN), IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) and IEEE Congress on Evolutionary Computation (IEEE CEC). After 2008, it has been held every two years constantly. In these years, artificial intelligence (AI) changes the world rapidly and dramatically. This is a great success of our continuous endeavor pioneering the essence, fundamentals, technology and applications in AI as computational intelligence (CI). It is also the consequence of our contributions to strengthen the relationship between engineering and human beings. But, at the same time, AI sometimes gives rise to ethical issues and even conflicts among people. In this sense, human beings are challenged by our own technology. Now let's sail out to unlimited horizons further, imagine the next 30 years from now, and enjoy our next journey by starting at the WCCI this year! Yokohama is a port city, known as one of the ports first opened to the world after the closed Edo era in 1859, one of the most exciting melting-pot of eastern and western culture in the world, and for a number of universities, institutes and companies of advanced information technology, electronics, robotics, mobility, medicine and foods. A WCCI held in this area will strongly inspire the attendees to imagine next-generation science and technology. "Best experience for all the participants" is the motto of the Organizing Committee. We look forward to welcoming you all for a memorable WCCI 2024. Let's put heads and hands together to explore CI with a long-range scope to develop a society full of comfort, peace and humanity based on our intelligence technology! Akira Hirose The University of Tokyo Japan Hisao Ishibuchi Southern University of Science and Technology China #### **IJCNN 2024 Welcome Message** On behalf of the IJCNN Organizing Committee, it is my pleasure to extend a warm welcome to all of you attending this year's International Joint Conference on Neural Networks (IJCNN) in Yokohama, Japan. IJCNN 2024 reflects the mission of INNS, a society established in 1987 as the first international, interdisciplinary and inclusive professional organisation focusing on theoretical and computational aspects of brain-inspired learning machines. This year's IJCNN received over 3272 submissions from 80 countries, out of which 1701 have been accepted. The conference program includes over 40 Special Sessions including Deep Learning for Graphs, Trustworthy and Explainable Federated Learning: Towards Security and Privacy Future, Domain Adaptation for Complex Situations: Theories, Algorithms and Applications, Learning from Small Data: Techniques and Applications, Machine Learning and Signal Processing for Brain or Behavioral Analysis, Neural Network-Based Methods for Human-Centric Perception and Understanding, Neuromorphic/Brainmorphic Al Models, Hardware and Applications and many more sessions on pertinent topics. I would like to thank everyone who has given their time, energy and ideas to assist in organizing this event, including all the members of the organizing committee, the Technical Chairs (Zeng-Guang Hou, Barbara Hammer, Teresa Ludermir and Seiichi Ozawa, all the reviewers, and our keynote speakers: Johan Suykens, Masashi Sugiyama, Plamen Angelov, Yukie Nagai and Divyashree-Shivakumar Sreepathihalli. I wish you all a wonderful and memorable experience at the International Joint Conference on Neural Networks in Yokohama, Japan. Your participation here demonstrates the dedication and enthusiasm for neural networks research that will shape and develop the future of this field. Chrisina Jayne IJCNN Conference Chair and INNS VP for Conferences #### **IEEE CEC 2024 Welcome Message** On behalf of the Organizing Committee, it is my greatest pleasure to welcome you to the 2024 IEEE Congress on Evolutionary Computation (IEEE CEC 2024), as part of the 2024 IEEE World Congress on Computational Intelligence (IEEE WCCI 2024), to be held on 30 June to 5 July 2024 at Yokohama, Japan. IEEE CEC 2024 is a major international conference in the field of evolutionary computation, which covers all topics in evolutionary computation from theory to applications. The aims of this conference are to provide a forum for researchers and practitioners to exchange the latest advances and demonstrate state-of-the-art theory, algorithm design, and real-world applications, and to explore new directions and potentials in the field of evolutionary computation. This year, CEC highlights 24 tutorials given by experts in the most relevant and emerging topics of evolutionary computation. It also features 49 advanced special sessions organized by domain specialists covering focused topics in evolutionary computation and computational intelligence, 5 workshops in the most exciting and lively research areas and several competitions in the field. IEEE CEC 2024 received 665 submissions from authors of 64 countries and regions, where the top contributors by country are China, Japan, Mexico, USA, Brazil, UK, and India. Under the guidance of the WCCI 2024 general co-chairs, technical co-chairs of IEEE CEC 2024, and the help of special session organizers, 350 papers (acceptance rate is 52.63%) were accepted for publication in the proceedings after a rigorous review process, where almost all papers have at least three reviews. IEEE CEC 2024 also includes 13 Late breaking papers as well as 16 Journal-to-Conference presentations. The accepted papers cover a heathy mix of research topics ranging from the latest advances in the evolutionary computation area to the next steps in our commitment on mimicking nature to solve real-world problems. All this would not have been possible without all the people in the organizing committee. I would like to thank the guidance and support of the General Co-Chairs: Akira Hirose and Hisao Ishibuchi. Special thanks also go to the IEEE CEC 2024 Technical Co-Chairs Carlos Coello Coello, Xiaodong Li, Juergen Branke, Nelishia Pillay, and Mengjie Zhang. I am also very grateful to Handing Wang as the Special Session Chair, Chuan-Kang Ting as the Tutorial Chair, Sanaz Mostaghim as the Conflict-of-Interest Chair, Oscar Cordon as the Plenary Session chair, Yaochu Jin as the Panel Session Chair, Jialin Liu as the Competition Chair, Ying Bi as the Workshop Chair, Yi Mei as J2C Papers Chair, Andries Engelbrecht, Kalyanmoy Deb, Pietro Oliveto and Rong Qu as the Best Paper Committee members, as well as other chairs of the WCCI 2024 conference. Last but not least, I would like to thank the plenary/keynote speakers, Akira Oyama, Yew Soon Ong, Handing Wang, Jialin Liu, Mengjie Zhang, and Tobias Rodemann. Finally, I would like to thank all the authors who submitted their work, to the reviewers, to all the participants of IEEE CEC 2024, and the IEEE WCCI 2024 sponsors for their great support. # Sincerely, Bing Xue, IEEE CEC 2024 Conference Chair #### **FUZZ-IEEE 2024 Welcome Message** On behalf of the Organizing Committee, I would like to welcome all the delegates and their guests to The IEEE International Conference of Fuzzy Systems 2024 (FUZZ-IEEE 2024) as part of the 2024 IEEE World Congress on Computational Intelligence (IEEE WCCI 2024) which is organized from June 30 – July 5, 2024 in Yokohama, Japan. FUZZ-IEEE 2024 is a premier event in the areas of Fuzzy Systems. This conference covers all topics in Fuzzy Systems including Mathematical and theoretical foundations; Fuzzy Set theory, fuzzy measures, fuzzy integrals; Fuzzy control; Robotics and autonomous systems; Fuzzy hardware, software, sensors, actuators, architectures; Fuzzy data analysis; Fuzzy information processing; Type 2 fuzzy sets, computing with words, granular computing, rough set; Computational and artificial intelligence; Optimization and operations research; Decision analysis, multi-criteria decision making, and decision support; Fuzzy modeling, identification, and fault detection; Knowledge discovery; Fuzzy image, speech and signal processing, vision and multimedia data; Linguistic summarization, natural language processing; Fuzzy human interfaces (HCI for and with fuzzy approaches); Deep fuzzy systems; Fuzzy applications; Responsible and trustworthy AI; Role of fuzzy approaches in explainable AI; Multi- and inter-disciplinary advances in, for, or with fuzzy approaches; Fuzzy approaches in the social sciences; and Fuzzy pattern recognition. This year, we also have a session for "Late Breaking" papers to share newly developed ideas with preliminary results and a session called "J2C" for papers that summarize concepts from the authors' journal publications within 2-year of the conference date. There were 118 accepted regular papers out of 222 submitted papers, while there were 16 accepted late breaking papers out of 32 submitted papers. For the J2C session, the number of accepted papers is 2 out of 13. There were 51 countries of submission authors with the following top-10 countries: Japan(13.4%), Italy(10.0%), China(8.6%), Spain(8.5%), UK(7%), India(5.4%), USA(5.2%), Taiwan(4.8%), Poland(4.5%), and Canada(3.6%), respectively. We would like to express our deepest thanks to authors, plenary speakers, and keynote speakers for supporting FUZZ-IEEE by presenting their most recent works and sharing their ideas. We would like to thank reviewers for valuable comments. Finally, we would like to thank our supporting staffs for all helps in making this a great conference. We wish you a fantastic conference experience and wonderful staying in Yokohama, Japan. #### Welcome to Japan. Sansanee Auephanwiriyakul, FUZZ-IEEE 2024 Conference Chair # **Access the WCCI 2024 Web App** Scan the QR code to access the web app. View the full schedule, plan your agenda, learn more about the presentations/speakers, and more. | Apple / iPhone | Android / Chrome | Samsung | |------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------| | Scan the QR code 2. Log in 3. Click "Î" 4. Click "Add to Home Screen" 5. Click "Add" | <ol> <li>Scan the QR code</li> <li>Log in</li> <li>Click "i "</li> <li>Click "Add to Home Screen"</li> <li>Click "Add"</li> </ol> | <ol> <li>Scan the QR code</li> <li>Log in</li> <li>Click "=" Click "Add Page to"</li> <li>Click "Home Screen"</li> <li>Click "Add"</li> </ol> | Complimentary wireless internet access is available for IEEE WCCI 2024 attendees. Please use the email address used to register and use the password WCCI2024 to access the web app! You can access all virtual rooms by going to the desired session within the Conference App ONLY use Safari if you are an IOS user. ## WIFI: SSID: (FREE PACIFICO) Password: No password required #### **IEEE-CIS Organization** #### **2024 Executive Committee** #### President Yaochu Jin, Westlake University, China #### **Past President** James M. Keller, University of Missouri, USA ## **Vice President for Finances** Pablo A. Estevez, Universidad of Chile, Chile #### **Vice President for Conferences** Leandro L. Minku, University of Birmingham, UK ## **Vice President for Industrial & Activities** Piero P. Bonissone, Piero P Bonissone Analytics, LLC, USA #### **Vice President for Technical Activities** Christian Wagner, University of Nottingham, UK #### **Vice President for Publications** Kay Chen Tan, The Hong Kong Polytechnic University, Hong Kong ### **Vice President for Member Activities** Sanaz Mostaghim, Otto von Guericke University of Magdeburg, Germany #### **Vice President for Education** Pau-Choo (Julia) Chung, National Cheng Kung University, Taiwan ## **INNS Organization** #### **2024 INNS Executive Committee** #### President Danilo Mandic, Imperial College London, UK #### **President-Elect** Francesco Carlo Morabito, University Mediterranea of Reggio Calabria, Italy ## Secretary Marley Vellasco, PUC-Rio, Rio de Janeiro, Brazil #### **Treasurer** Danil Prokhorov, Toyota R&D, Michigan, USA #### **VP for Conferences** Chrisina Jayne, Teesside University, Middlesbrough UK ## **VP for Membership** Seiichi Ozawa, Kobe University, Kobe, Japan #### **VP for Education** Zenglin Xu, Harbin Institute of Technology, Shenzhen, China ## **VP for Industry Relations** G. Kumar Venayagamoorthy, Clemson University, Clemson, SC, USA #### 2024 INNS Key Committee Chairs & Members #### **Immediate Past President Nomination Committee Chair** Chrisina Jayne, Teesside University, Middlesbrough UK #### **Awards Committee Chair** Ali Minai, University of Cincinnati, USA #### **College of Fellows Chair** Robert Kozma, University of Memphis, Tennessee, USA ## Women's Chapter Chair Hava Siegelmann, University of Massachusetts Amherst, USA #### **Bylaws Committee Chair** Irwin King, The Chinese University of Hong Kong, Hong Kong #### 2024 INNS Co-Editors-in-Chief of Neural Networks Journal DeLiang Wang, *The Ohio State University, Ohio, USA*Taro Toyoizumi, *RIKEN Center for Brain Science, Saitama, Japan* #### 2024 IINNS Elected Governors-at-Large Peter Andras, Edinburgh Napier University, Edinburgh, UK Anne Canuto, Federal University of Rio Grande do Norte, Brazil Jonathan Chan, King Mongkut's University of Technology Thonburi, Thailand Kenji Doya, Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan Pétia Georgieva, University of Aveiro, Portugal Alexander Gorban, University of Leicester, Leicester, UK Haibo He, University of Rhode Island, South Kingstown, USA Sebastien Helie, Purdue University, Indiana, USA Chrisina Jayne, Teesside University, Middlesbrough UK Ali Minai, University of Cincinnati, USA Seiichi Ozawa, Kobe University, Kobe, Japan Huajin Tang, Zhejiang University, Hangzhou, China Thomas Trappenberg, Dalhousie University, Halifax, Canada Marley Vellasco, PUC-Rio, Rio de Janeiro, Brazil G. Kumar Venayagamoorthy, Clemson University, Clemson, SC, USA DeLiang Wang, The Ohio State University, Columbus, Ohio, USA Zenglin Xu, Harbin Institute of Technology, Shenzhen, China #### **IEEE WCCI 2024 Organizing Committee** #### **General Chairs** Akira Hirose, *The University of Tokyo, Japan* Hisao Ishibuchi, *Southern University of Science and Technology, China* #### **IJCNN Conference Chair** Chrisina Jayne, Teesside University, UK #### **IJCNN Technical Chair** Zeng-Guang Hou, *Chinese Academy of Sciences, China*Barbara Hammer, *Bielefeld University, Germany*Teresa Ludermir, *Federal University of Pernambuco, Brazil*Seiichi Ozawa, *Kobe University, Japan* #### **FUZZ-IEEE Conference Chair** Sansanee Auephanwiriyakul, Chiang Mai University, Thailand #### **FUZZ-IEEE Technical Chair** Nipon Theera-Umpon, *Chiang Mai University, Thailand* Keeley Crockett, *Manchester Metropolitan University, UK* Mihail Popescu, *University of Missouri, USA* #### **CEC Conference Chair** Bing Xue, Victoria University of Wellington, New Zealand #### **CEC Technical Chair** Carlos Artemio Coello Coello, CINVESTAV-IPN, Mexico Xiaodong Li, RMIT University, Australia Juergen Branke, The University of Warwick, UK Nelishia Pillay, University of Pretoria, South Africa Mengjie Zhang, Victoria University of Wellington, New Zealand #### **WCCI Chairs** #### **Finance Chairs** Seiichi Ozawa Teijiro Isokawa ## **Sponsorship Chairs** Toshiaki Omori Teijiro Isokawa #### **Exhibition Chairs** Tomohiro (Tom) Shibata Hideaki Yamamoto #### **Publication Chair** Kazushi Ikeda ## **Paper Submission Chairs** Keiichi Horio Hiroaki Wagatsuma Kei Ohnishi ## **Publicity / Public Relations Chairs** Junichiro Yoshimoto Kanta Tachibana ## **International Publicity Chairs** Jose Maria Alonso-Moral Guilherme Barreto Beatrice Ombuki-Berman Min Jiang Ferrante Neri Zhen Ni Hemant Singh ## **Plenary Session Chairs** Nishchal K. Verma Derong Liu Kenji Doya Joao M. Costa Sousa Oscar Cordon ## **Special Session Chairs** Robi Polikar Marie-Jeanne Lesot Mika Sato-Ilic **Handing Wang** Noriyasu Homma Yasue Mitsukura #### **Tutorial Chairs** Naoyuki Kubota Jesus Chamorro Chuan-Kang Ting ## **Workshop Chairs** Rieko Osu Derek T. Anderson Ying Bi #### **Panel Session Chairs** Hitoshi Iba Susana Vieira Yaochu Jin Hava Siegelmann Hiroshi Yamakawa ## **Conflict-of-Interest Chairs** Christian Wagner Chee Seng Chan Sanaz Mostaghim ## **Diversity and Inclusion Chair** Dipti Srinivasan ## **Industry Liaison Chairs** Asim Roy Hakaru Tamukoh ## **Competition Chairs** Anna Wilbik Jialin Liu ## **Award Chair** Masashi Sugiyama #### **Student Activities Chairs** Mikiko Sato Hayaru Shouno Eckhard Hitzer ## **Mobile App and Social Media Chairs** Hirosato Seki Yasuo Kudo Sou Nobukawa #### **Technical Tour Chairs** Toshiyuki Yamane Akira Oyama Eiji Uchibe Shinya Watanabe #### **On-Line Conference Chairs** Koichiro Yamauchi Hisashi Handa Hiroyuki Sato Naoki Masuyama Toda Yuuichirou Takashi Shinozaki Tomohiro Harada Seiki Ubukata Yuji Iwahori ## **Local Arrangement Chairs** Hiroyuki Torikai Ryosho Nakane Gouhei Tanaka Tomoe Entani Takashi Matsubara Brian Sumali ## **WCCI Program Coordination Chair** Yusuke Nojima ## **J2C Papers Chairs** Sansanee Auephanwiriyakul Yi Mei Toshihisa Tanaka #### Reviewers The conference thanks the following distinguished experts for their invaluable help with the review process within specific technical areas. Ali Abboud Dhiya Al-Jumeily Mauricio Ayala Rincón Abdullah Abdullah Rui Jorge Almeida Ahmad Taher Azar Tamirat Abegaz Jose Almeida Jorge Azorin-Lopez Soukayna Abibou Paulo Ricardo Almeida Nebojsa Bacanin Mohammad Abido Saleh Almohaimeed Jaume Bacardit Giovanni Acampora Ali Almohammedi Alan Bacellar Hisham Al-Mubaid Diego Acosta-Ugalde Arunkumar Bagavathi Hiroki Adachi Yiannis Aloimonos Ruibin Bai Chandranath Adak Jose Alonso-Moral Wenlei Bai Mohammed Al-Radhi Panagiotis Adamidis Xiangyu Bai Leopoldo Altamirano Tosin Adewumi Chenshuai Bai Somrita Bakshi Olaoluwa Adigun Lee Altenberg Antonio Ballarin Syed Hasan Adil Rajanikanth Aluvalu Rafael Afonso Rodrigues Marco Alvarez Armand Bandiang Massoua Mudit Agarwal Shanika Amarasoma Snehasis Banerjee Jose Aguilar Ivan Amaya Raju Bapi Bestoun Ahmed Md Shahedul Amin Pedro Baptista Machado Tashin Ahmed Marco Amoruso Mohamad Hardyman Barawi Md Rubel AhmedWenbo AnJean Paul BarddalSangtae AhnNa Min AnAnass BarodiMuhammad AitsamZhiJian AnPedro BarrosBenjamin AjibadePanagiotis AnagnostouMárcio BasgaluppBerlian Al KindhiSandeep AngaraKalliopi Basioti Sadam Al-Azani Mohammed Yusuf Ansari Sebastian Basterrech Jose Carlos AlcantudPerrone Antonio LuigiJoao BatistaGuilherme AldeiaYu AoSlim BechikhFrancesco AlesianiMohd AquibPeter A. BeerelLuís AlexandreOsamu ArakiMichael Beigl Biliana Alexandrova-Kabadjova Paolo Arcaini Ali Beikmohammadi Ali Alfatemi Paolo Arena Alistair Benford Souma Alhaj Ali Takaya Arita Peter Bentley Sarah Alhammad Masayoshi Aritsugi Emilio Bernal-Zubieta Maan Alhazmi Azam Asilian Bidgoli Mario Luca Bernardi Ahoud Alhazmi Shadi Atalla Heder Bernardino Amin Ali Sansanee Auephanwiriyakul Filippo Berto Abdulwahab Aljubairy Mohamad Awad Hans-Georg Beyer Karuna Bhaila Heloisa Camargo Ayush Chaturvedi Pradeep Bhale Celso Camilo Vivek Chaturvedi Harsh Bhandari Yashwardhan Chaudhuri Paula Campigotto Arya Bhattacharya Maurizio Campolo Mousmi Ajay Chaurasia Gaurab Bhattacharya Anne Canuto Feihu Che Siddhartha Bhattacharyya Lulu Cao **Huaming Chen** Li Cao Dong Chen Arinjita Bhattacharyya Duc Cao S Chen Ying Bi Chun-Hao Chen Jichao Bi Jingkang Cao Tai-You Chen Xiaoyang Bi Yangkun Cao Rafał Biedrzycki Yang Cao Ying-ping Chen Lang Cao Qi Chen Zitong Bo José Bobes-Bascarán Guitao Cao Lu Chen Fernando Bobillo Kevin Matthe Caramancion Tianhua Chen Kanishka Bodreddigari **Grilo Carlos** Longcan Chen Vedant Bonde Lourenco Carlos Rui Chen Paolo Bonetti Murillo Carneiro Yongkang Chen Gloria Bordogna Oscar Cartagena Chenggang Chen Julia Borisova Joao Paulo Carvalho Hongzhou Chen Anna Bosman Fabio Casamatta Jianxia Chen Janos Botzheim Giovanna Castellano Jin Chen Bernadette Bouchon-Meunier Giovanni Castiglioni Peng Chen Arnaud Bougaham Lucas Castro Sousa YuHan Chen Fei Chen Khaoula Braiki **Hubert Cecotti** Xiao Chen Ali Braytee Shipeng Cen Alceu Britto Martin Cenek Yangyang Chen Joseph Brown Jose Ceron Neto Zhengyu Chen Alessio Brutti Mohammed Chadli **Zongxiong Chen** Yekun Chai Edgar Buchanan Baoyu Chen Chuhao Chen **Andrew Buck** Sai Pradeep Chakka Sovon Chakraborty Petr Bujok Biswadeep Chakraborty Kuan-Cheng Chen Jingjia Chen Ly Bui Michal Burda Jeffrey Chan Lin Chen Kiran Byadarhaly Philip Chan Wen-Ching Chen Jérémie Cabessa Yue Chang Haopeng Chen Stefano Cagnoni Ke Chen Yau-Zen Chang Tao Cai **Shan Chang** Kexin Chen Benhui Chen Shubin Cai Wenjing Chang Hiram Calvo Fei Chao Chang-Shuo Chen Luis-Alexander Calvo-Valverde Kunal Chaturvedi Junying Chen Qiuxiao Chen Yandre Costa Jacopo de Berardinis Junqi ChenCarlos CottaPaulo Vitor De Campos SouzaRan ChengJonathan CourtoisFrancisco de A. T. De Carvalho Shi Cheng Paolo Crippa Fabrício de França Chun Cheng **Keeley Crockett** Robert de Luna Xirun Cheng Rafael Cruz Joaquim de Moura Anselmo de Paiva Zhang Cheng **Guangming Cui** Valentin Delchevalerie Peng Cheng Hongzhen Cui Luyi Cheng Lizhen Cui Kosmas Deligkaris Xinchun Cui Xianhui Cheng Antonio Della Cioppa Ming Cheng Adam Czajka Qi Deng He Cheng Sugumar D Yang Deng Dai Chenglong Francesco Da Ros Hangyu Deng Chi-Chung Cheung José Eduardo da Silva Bilel Derbel Sergio Chevtchenko Marcondes da Silva Júnior Guilherme DeSouza Aviral Chharia Dharmeshsinh Dabhi Shridhar Devamane Tsung-Che Chiang Matthieu Dabrowski Joydeep Dey Angela Chiatto Amirmasoud Kalantari Dahaghi Swarnava Dey Kazuhisa Chiba Hao Dai Xingjian Diao Francisco Chicano Scott Dick Tao Dai Wei Hong Chin Yucong Dai Jinliang Ding Josimar Chire Saire Mingliang Dai Yongqi Ding Pao-Hsiung Chiu Yong Dai Boyu Ding Hsin-Hung Cho Sagnik Dakshit Mengqian Ding Marta Chodyka Sarada Dakua Ye Ding Yoonsuck Choe Tanmov Dam Yue Ding Muskaan Chopra Saeed Damadi Peketi Divya Prakash Chourasia Manon Dampfhoffer Abhishek Dixit Liang Chu Truong Dang Benjamin Doerr Sergei Chuprov Giuseppe D'Aniello Carola Doerr Marta Cimitile Grégoire Danoy Radu Dogaru Vasco Coelho Salvatore D'Antonio Josué Domínguez Guerrero Leandro Coelho Austeja Dapkute Minhui Dong Valentina Colla Mostafa Darwiche Yilin Dong Andrew Colligan Kritiprasanna Das Anming Dong Oscar Cordon Datta Ming Dong Roberto Corizzo Gourav Datta Ruggero Donida Labati Andrea Corradini Brown David Ran Dou Ulisses Corrêa Diogo de Almeida Sarjoun Doumit Lino Costa Vincenzo De Angelis Douglas Down John DrakeChenyou FanXin FuJan DrchalDeliang FanJiadong FuIvanna DronyukXiuyi FanZhenqi FuHongyi DuXiaoya FanJunjie Fu Wenbo DU Ge Fan Ninnart Fuengfusin Kelvin Du Jin Fan Javier Fumanal Idocin Yaxin Fan Wenhao Du Giorgio Fumera Mingshan Du Jianping Fan Wai Keung Fung Hongyun Du Wei Fang Breno Funicheli Andres Fuster-Guillo Mathys du Plessis Weiwei Fang Haibin Duan Le Fang Mauro Gaggero Haoran Duan Marcelo Fantinato Mikel Galar Wentao Duan Muhammad Shahid Farid Melvin Galicia Leonardo Duarte Zouari Farouk Marcus Gallagher Pietro Ducange Haolin Fei Tian Gan Rahul Dubey Chastine Fatichah Marko Đurasević Hsuan-Ming Feng Suryakanth Gangashetty Akemi Gálvez Juan Durillo Jia Hui Feng Shangce Gao Richard Duro Yunling Feng Fengyu Gao Jun Gao Suci Dwijayanti Xiaoyan Feng Manuel Eberhardinger Xiaoqian Gao Liang Feng Kitani Edson Mst Ferdus Yufei Gao Tome Eftimov Marcelo Fernandes Han Gao Markus Eisenbach Javier Fernandez Lei Gao Mounim El Yacoubi Alberto Fernandez Ruobin Gao Hagar Elbatanouny Francisco Fernández de Vega Shang Gao Adi El-Dalahmeh Rosa Fernández-Alcalá Zhipeng Gao Daniel ElliottMauri FerrandinShengxiang GaoForney ElliottGonçalo FerreiraLiyuan GaoEmad ElsamahyJonathan FieldsendJunbin GaoSaber ElsayedGrazziela FigueredoShayan Garani Nelly Elsayed Anastasiia Filatova Carlos Garcia-Martinez Andries Engelbrecht Jérôme Fink Angel Garcia-Pedrero Tomoe EntaniUgo FioreJochen GarckeReza EslamipoorStuart FlocktonDeepanshu GargSami FadaliWilfredo FloresJonathan Garibaldi Omobayode Fagbohungbe Francesco Fontanella María del Carmen Garrido Nafiz Fahad Germain Forestier Storey Gary Reza Faieghi Benoît Frénay António Gaspar-Cunha Jan Faigl Rewbenio Frota Huanhuan Ge Shujie GeTong GuoYvs HarishAlexander GegovJing GuoSheetal HarrisS. GeorgakopoulosKangshuai GuoPitoyo HartonoPetia GeorgievaLin GuoJunaid Haseeb Alexander Gepperth Quanjiang Guo Atiye Sadat Hashemi Soumitra Ghosh **Kailing Guo** Khan Md Hasib Subhayu Ghosh Yangzi Guo Amartya Hatua Yan Guo Sayantani Ghosh Yujiang He Daniel Gibert Jianxiong Guo Jiezhou He Onofrio Gigliotta Muhao Guo Luvao He Francisco Javier Gil-Gala Yinsai Guo Jianyu He Martin Gillis Hongjie Guo Fuyun He Adrián Girón Shi Guodong Hao He Gini Giuseppina Gaurav Gupta Liang He William Gnadt Vishu Gupta William H William Gnadt Vishu Gupta William Headley Walid Gomaa Pedro Antonio Gutiérrez Kshiteesh Hegde Daniel Gomez Abdalrahman H Alblwi Michael Heider Francisco Gomez-Donoso Mario Haddad Stefan Heinrich Luís Gonçalves Mouna Hadj-Kacem Marde Helbig Cheng Gong Petr Hajek Sébastien Hélie Jiaying Gong Mritunjoy Halder Patrick Henaff Yunpeng Gong Sadaf MD Halim Arturo Hernández-Aguirre Pedro Henrique González Jennifer Hallinan Malcolm Heywood Alexander Gorban Andi Han Simon Hickinbotham Antriksh Goswami Xinchen Han Yassine Himeur Debanjan Goswami Xianhua Han Chris Hinde Hanno Gottschalk Garrison Greenwood Xianhua Han Xianhu Stéphane GrieuDingding HanTomoyuki HiroyasuFrancesco GrimacciaFengxia HanEckhard HitzerTill GrutschusMingjie HanMartin Holena Haoran Gu Emrah Hancer Christoph-Alexander Holst Yang Gu Thomas Hanne Katsuhiro Honda Hao Hao Qiang Guan Tzung-Pei Hong Krishnendu Guha Yuzhe Hao Haokai Hong Mei-Jiang Gui **Zhang Hao** Mo Hongwei Aldy Gunawan Mohd Ariful Haque Felipe Honjo Ide Weian Guo Saemundur Haraldsson Adrian Horzyk Jia Guo Tanja Harbaum MD Sazzad Hossen Liucheng Guo Dalia Hareb Sedjro Salomon Hotegni Yaqing Hou Yuesheng Huang Jun Jiang Min Jiang Rui Hou Yuzhu Huang Sheridan Houghten Marco Huber Haoyu Jiang Bill Howell Javier Huertas-Tato Liwen Jiang Hsieh-Chih Hsu Li Huinian Miao Jiang Ming-Fu Hsu **David Hutter Linling Jiang** Chih-Chien Hu Christian Huyck Ruijie Jiang Yongjian Hu Dimitris lakovidis Weiwei Jiang Wenbin Hu Nicolangelo Iannella Junxia Jiang Yuxi Hu Gerardo Ibarra-Vazquez **Kexin Jiang** Yibo Hu Soufiane Idbraim **Keyang Jiang** Minghui Hu Ali Idrees Minghao Jiang Qifu Hu Cosimo Ieracitano Chengzhi Jiang Gang Hu Tosin Ige Junkun Jiang Jinglu Hu Daniel Iglesias Xiushan Jiang Yan Hu Isibor Ihianle Ye Jiang Yiwen Hu Hiroyuki lizuka Pengcheng Jiang Bin Hu Muhammad Fazal Ijaz Hongyu Jin Volkan Ince Songchang Jin Chengyin Hu Zhaoxin Hu Andoni Irazusta Garmendia Yitao Jing Liang Hualou Fuyuki Ishikawa Muyeon Jo Ko-We Huang Murat Isik Colin Johnson **Zhixing Huang** Md. Farhadul Islam Maulin Joshi Kazi Aminul Islam Junhao Huang Tianjie Ju Muhammad Aminul Islam Liping Huang Chen Juan Julio Juárez Changwu Huang Vinay Jadoun Wall Julie Congrui Huang Pankaj Jain Xueting Huang Thomas Jansen Yoshitsugu Kakemoto Fanlin Huang Appannacharya Kalyan Tej Javvadi Prafulla Kalapatapu Pan Huang Rajesh Jayaprakash Alexander Kalinowski Nartkannai K Domagoj Jakobovic Xinlei Huang Lamirel Jean-Charles Shin Kamada Zhishen Huang Richard Jensen Md Sarwar Kamal Jen-Wei Huang Jingyu Ji Keisuke Kameyama Qiubo Huang Yaxin Ji Nagarajan Kandasamy Yu-Hui Huang Bingbing Ji Xu Kang Dexing Huang Juncheng Jia Peng Kang **Enbo Huang** Hailong Huang Lei Jia Prashanth Kannadaguli Xiaoyu Huang lin jiajing Dmitriy Kaplun Yafan Huang Ping Jian Taniya Kapoor Arjun Karuvally Xiangjie Kong Raymond Lee Muhammad Kashif Fanyu Kong Tingjun Lei Yoshiaki Katada Christos Korgialas Zhenyu Lei Supreet Kaur Bart Kosko Yu Lei Hiroshi Kawaguchi Constantine Kotropoulos Daniel Leite Hiroshi Kawaguchi **Constantine Kotropoulos** Daniel Leite Yuji Kawai **Sotiris Kotsiantis** Zsofia Lendek Shio Kawakami Andrew Lensen Xupeng Kou Yue Kou Uzay Kaymak Carson Leung Sajjad Kazemi Szilveszter Kovács Chenyang Li Kexin Ke Piotr A. Kowalski Jiawei Li Ed Keedwell Ivan Koychev Xinghua Li James Keller Vladik Kreinovich Bin Li Philip Kenneweg Naresh Kumar Yifeng Li Jinno Kenya Pankaj Kumar Cuixia Li Sye Loong Keoh Deepak Kumar Hao Li Chutisant Kerdvibulvech Ratnesh Kumar Yiran Li **Bulat Khaertdinov Hemant Kumawat** Nan Li Ashraf Khalaf Tufan Kumbasar Keqiuyin Li Yasser Khalafaoui Katsuyuki Kunida Li Li Mohamed Khamis Omar Olga Kurasova Mengmeng Li Mohammad Ashrafuzzaman Khan Takashi Kuremoto Piji Li Ahmed Kheiri Bharat Ladrecha Qijun Li Reshma Khemchandani Daphne Teck Ching Lai Sheng Li Ghazaleh Khodabandelou Songning Lai Yongchao Li Hadi A. Khorshidi Edmund Lai Fuxue Li Abbas Khosravi Germano Lambert-Torres Guangming Li Nikhil Kilari Gongjin Lan Jiulin Li Sangwook Kim Dario Landa-Silva Tao Li Jon-Lark Kim Annabel Latham Xing Li Hiroaki Kingetsu Kittichai Lavangnananda Xudong Li Witold Kinsner Yuri Lavinas Yangyang Li Mikhail Kiselev Marcelino Lázaro Yingtian Li Simon Klüttermann Sara Lazzaro Zhiyuan Li Christina Klüver Hoang Le Gang Li Masahiro Kohiima Teema Leangarun Ruyang Li Jörn Kohlhammer Shih-Hsiung Lee Shigang Li Yasuharu Koike Ka Man Lee Xia Li Stefanos Kollias Chu-Hui Lee Zhiheng Li Zuzana Kominkova Oplatkova Xian Yeow Lee Bingjun Li Jacek Komorowski Chien-Cheng Lee Chao Li Kwan Hui Lim Chunping Li Xiaoqian Liu Miles Li Tiago Lima Xiaoyin Liu Peipei Li Weslley Lima Zhiqiang Liu Xun Li Wen-Yang Lin Dingkun Liu Yaozu Li **Bocheng Lin** Jing Liu Yiqiao Li Jiabin Lin Meiling Liu Hui Li Meng Liu Jianqing Lin Jiankuo Li Zexin Lin Tianliang Liu Xiang Li Renwei Lin Weidong Liu Xiaohui Li Hua Lin Yuxi Liu Kai Lin Xingfu Li Marcus Liwicki Yi Li Daw-Tung Lin Joseph Lizier Yujie Li Shang-Chih Lin Giosue' Lo Bosco Yunhan Li Xian Liu Volker Lohweg Yilu Liu Daniele Loiacono Zhengang Li Jianbo Li Yongcun Liu Zhaoxin Long Jing Li Zhi Liu Chu Kiong Loo Jiuqiang Li Ruochen Liu Ahmad Lotfi Juan Li Siming Liu Yang Lou Junli Li Fei Liu Cris Lovell-Smith Mingyong Li Jiao Liu Chengyu Lu Shih-Yu Li Shulei Liu Wenhao Lu Sichao Li Yuxin Liu Yu Lu Taihui Li Bo Liu Yangyi Lu Wenhao Li Hao Liu Guoqiang Lu Jie Liu Xiangzheng Li Yang Lu Xianju Li Ke Liu Tianbo Lu Xiaoxue Li Cuiwei Liu Wenpeng Lu Yao Li Tianyuan Liu Sitao Luan Yaotian Li Ye Liu Simone Ludwig Zhe Li Ju Liu David Luengo Ziang Li Peng Liu Szymon Lukasik Lin Li Wei Liu Francisco Luna Can Li Yujie Liu Wenjian Luo Haolin Liu Bo Luo Sheng Lian Limei Liang Jiahong Liu Jiabin Luo Xu Liang Xiaoguang Liu Xiongbiao Luo Ziqi Liang Chenyu Liu Yun Luo Xinghai Liao Jiaxin Liu Linhao Luo Arnaud Liefooghe Weifeng Liu Gabriel Luque Rafael M. Luque-Baena Christophe Marsala Amin Mohajer Pasi Luukka Trevor Martin Awsan Mohammed Fei Lv Jean Martinet Azhar Mohd Ibrahim Junwei Lv Paris Mastorocostas Debora Montano Lianbo Ma Francesco Masulli James Montgomery Wengiang Ma Hirovuki Masuta Hugo Monzon Maldonado Hanhan Ma Basarab Matei Giorgio Morales Xuesen Ma Edson Matsubara Juan Moreno Liang Ma Kazuyuki Matsumoto Carlos Moreno-Garcia Haokai Ma Elia Matsumoto Hiroyuki Mori Ming Ma Paulo S. G. de Mattos Neto Brian Moser Yuefeng Ma Ruben Mayer Amiram Moshaiov Xiyao Ma Alexander McDonnell Emmanouil Mpampis Yaxin Ma Aldísio Medeiros Hongzhang Mu Bodi Ma Thiago Medeiros Carvalho Supratik Mukhopadhyay Chao Ma Inmaculada Medina-Bulo Saibal Mukhopadhyay Tianfang Ma Eric Medvet Aos Mulahuwaish Xin Ma Md Humaion Kabir Mehedi Silvia Multari Penousal Machado Ashman Mehra Enzo Mumolo Gustavo Machado-Guillen Siamak Mehrkanoon Masaharu Munetomo Antonella Madau Kinal Mehta Michal Munk Joao Paulo Madeiro Jian-Ping Mei Mario Andrés Muñoz Camila Magalhaes Alexander Mendiburu Feby Mugtadiroh Israel Mendonca Shivashriganesh Mahato Taslim Murad Kleanthis Malialis Nabeel Murshed Fanlong Meng Heidar Malki Weizhi Meng Umer Mushtag Nadia Mammone Lei Meng Marco Mussetta Bishwas Mandal Christoforos Menos-Aikateriniadis Dharmalingam Muthusamy Ghaith Manita Marjan Mernik **Phivos Mylonas** Herrera Manuel Angelo Messina Pournami N Wenjie Mao Silja Meyer-Nieberg Aarthy Nagarajan Shuai Mao Efrén Mezura-Montes Daiki Nagata Hongwei Mao Fei Ming Naima Naheed Ricardo Marcondes Marcacini **Benoit Miramond** Kei Nakagawa Antonio Marceddu Péricles Miranda Takashi Nakano Carolina Marcelino Mustafa Misir Felipe Kenji Nakano Alberto Marchisio Kamlesh Mistry Masaya Nakata Viviana Mariani Kohei Miyamoto Amir Nakib Nicolás Marín Valeri Mladenov Jakub Nalepa Tijana Markovic Minggiao Mo Yang Nan Satyasai Nanda Andrzej Nowakowski Linsey Pang Cairo Nascimento Owusu Nyarko-Boateng Lulu Pang Ryo Natsuaki Takenori Obo Gregor Papa Avisek Naug Jim O'Connor Joao Papa Anand Nayyar Eduardo Ogasawara Savvas Papaioannou Antonio Nebro Tetsuji Ogawa Tasos Papastylianou Raghu Neelisetti Maciej Ogorzalek Daniele Papetti Chrystopher Nehaniv Hirotsugu Okuno Giovanni Paragliola Seyed Mohammad Nekooei Illia Oleksiienko Emerson Paraiso Antonio Neme Diego Oliva Raveendran Paramesran Ferrante Neri Nicolas Oliveira Gary Parker Mehdi Neshat Schütze Oliver Victor Parque Frank Neumann Taiwo Omomule Nikolaos Passalis Han Wei Ng Luca Oneto Luca Patanè Satoshi Ono Shashikant Patil Kwun Ho Ngan Keiko Ono David Pätzel Hoang-Anh Ngo Chidimma Opara Taraknath Paul Duc Manh Nguyen Phi Le Nguyen Takemori Orima Fernando Paula Neto Minh Nguyen Yukiko Orito Massimo Pavan Tien Nguyen Oluwatamilore Orojo Svetlana Pavlitska Vu Trung Nguyen Eneko Osaba Riccardo Pecori Thanh Nguyen Chi Aziz Ouaarab Martin Pedemonte Smail Niar Wenli Ouyang Alain Pegatoquet Alessandro Niccolai Miha Ožbot Wenbin Pei Stefano Nichele Ender Ozcan Bin Pei Nicoletta Nicolaou Parvathy Ramakrishnan P Henrique Peixoto Machado Lars NiedermeierPranav Jeevan PBarbara PękalaJúlio NievolaLuciano PacificoDirenc PekaslanHiroshi NinomiyaDiego PaezJephter Pelekamoyo Smita Nirkhi Pramudita Palar Cheng Peng Kei Nishihara Miguel Palencia-Olivar Chaoda Peng Geoff Nitschke Esteban Palomo Dan Peng Ziru Niu Yan Pan Lei Peng Hui Niu Han Pan Xueping Peng Ke NiuJinqian PanChenglei PengMarco NobileNickolaos PanagiotopoulosLuis Perdomo Sven Nomm Anurag Pandey Rocío Pérez de Prado Akira Notsu Hari Pandey Leif Peterson Pierre-Emmanuel Novac Massimo Panella Frédéric Pétrot Damijan Novak Lie Meng Pang Mikhail Petrovskiy Nhat Truong Pham Kangjia Qiao Christoph Räth Shruti Phutke Qian Qiao Mehul Raval Aung Aung Phyo Wai Tonghua Qiao Kiran Kumar Ravulakollu Marcin Pietroń Yanchen Qiao Anjan Ray Martin Pilat Yaojun Qiao Papia Ray Monica Pina-Navarro Linbo Qiao Tapabrata Ray Adam Kotaro Pindur Shufen Qin Tajul Rosli Razak Gema Piñero A. Kai Qin Marek Reformat Vincenzo Piuri Ming Qin Francesco Regazzoni Mariusz Pleszczyński Chuan Qin Qianqian Ren Christina Plump Yunbo Qiu Jianfeng Ren Daniel Polani Tianchi Qiu Alessandro Renda Dawid Polap Shuo Qiu Ehsanur Rahman Rhythm Jean-philippe PoliXilong QuHendrik RichterRobi PolikarHong QuRakib RifatFrancesco PonzioXiaoyang QuTatiane RiosPetrica Pop SitarJiang QuanRicardo Rios Edy Portmann Guo Quan Kazi Shah Nawaz Ripon Aurora Pozo Marcos Quiles Rafael Rivera-Lopez Radu-Emil Precup Venkataswamy R Joel Rixen Mike Preuss Rodrigue Rizk Arjun R Kenneth Price Mohamed Radwan Frederic Rizk Yapa Hetti Pathirannahalage PrasarUday Kiran Rage Miguel Rocha Priyadarshana M. Sohel Rahman Paulo Rodrigues Muhammad Rahman U. Deva Priyakumar Victor Rodriguez Danil Prokhorov Md Monibor Rahman Francisco Rodriguez Katarzyna Prokop Shahryar Rahnamayan Lino Rodriguez-Coayahuitl Ricardo Prudencio Deepak Rai Mauro Roisenberg Nicolas Pugeault Datla Rajesh Reddy Marta Romeo Francisco Pujol Ankit Rajpal José Raúl Romero Mauridhi Burnomo Kanshan Bajwar Alajandra Bomero Mauridhi Purnomo Kanchan Rajwar Alejandro Romero Diana Purwitasari Gopi Ramena Roseli Romero Igor Putnik Aurora Ramírez Jingqing Ruan Rachmad Vidya Wicaksana Putra Reshawn Ramjattan Jiacheng Ruan Xu Qi Azizul Azhar Ramli Jose de Jesus Rubio Qianqian Qi Sergio Ramos Ulrich Rueckert Hang Qi Xuming Ran Sarker Ruhul Xuanhao Qi Tanisha Rana Thomas Runkler Lijun Qian Guozheng Rao Heinrich Ruser Yinling Qian Rezaur Rashid Swarup S Takfarinas Saber Eric Scott Xinyu Sheng Payel Sadhukhan **Grant Scott** Jiawei Sheng Naveen Saini Fabio Scotti Quan Z. Sheng Krishanu Saini Winston Seah Xinyi Sheng Rajkumar Saini Goetz Sebastian **Zhao Shengrong** Jose Saito Manuel Segura John Sheppard Toshimichi Saito Lukas Sekanina Sheng Shi Yasufumi Sakai Stanislav Selitskiy Kuo Shi Kazuhiro Sakamoto Mrinmay Sen Dian-xi Shi Yusuke Sakemi Kishore Senapati Jiangyuan Shi Shigeaki Sakurai Xiaochuan Shi Terekhov Sergey Addisson Salazar José María Serrano Yonggiang Shi Jair Sales Alessandro Sestini Xiaoyu Shi Rohit Salgotra Jana Shafi Chin-Shiuh Shieh Michel Salomon Abdullah Shafi Shohei Shimizu Manar Samad Muhammad Shafique Iksoo Shin Kruttidipta Samal Sarah Shafqat Koichi Shirahata Shabadini Sampath Shakil Shaikh Shinichi Shirakawa Claudia Sanchez Siddhartha Shakya Hayaru Shouno Daniel Sánchez Hazem Shalby Tianye Shu Yingpeng Sang Pourya Shamsolmoali Shijing Si Helida SantosAo ShanRumali SiddiquaLuan SantosQihe ShanNazmul Haq Siddique Carlos SantosLin ShangLuigi SigilloSergio SantosKe ShangPekka SiirtolaJosé Antonio SanzZeyu ShangguanJakub SiłkaAnasua SarkarShuai ShaoAlberto Sillitti Sreetama Sarkar Zilong Shao Alisson Marques Silva Hideyasu Sasaki Yuanhang Shao Caio Silva Ranjan Satapathy Tohid Sharifi Andersson Silva Hiroyuki Sato Ekta Sharma Julio Cezar Soares Silva Eri Sato-Shimokawa Ashok Sharma Aline Silva Asma Sattar Pradip Sharma José Ivson S. Silva Shriraj Sawant Jun Shen Victor Silva Gerald Schaefer Jiangtao Shen André Silva Rafal Scherer Hao Shen Stefano Silvestri Massimiliano Schillaci Achim Schilling Linlin Shen Siddharth Singh Maheshwari Singh Frank-Michael Schleif Fei Shen Jatindeep Singh Sarah Schröder Wei Shen Suresh Singh Alice Smith Jingzhang Sun Katsumi Tateno Cláudia Soares Qiyu Sun José Gabriel P. Tavares João SoaresRui SunThomas TawiahFabio SolariChengcheng SunKasemsit Teeyapan Nguyen Son Chi Wan Sung Edwin Kwadwo Tenagyei Yanjie Song Marek Suppa Fei Teng Chunli SongPeter SutorJonathan TepperSensen SongReiji SuzukiLucia TestaYuxiang SongSatoshi SuzukiDang Thang Insu Song Zaneta Swiderska-Chadaj Truong Thao Nguyen Shuangyong Song Maciej Swiechowski Surendrabikram Thapa Zichen SongRudolf SzadkowskiKavitha ThomasZijie SongVelmurugan TPhilippe ThomasYonghong SongMoctar TacheCarlos ThomazArpit SoodKiyoharu TagawaP. Md. ThousifVictor SosaSabereh Taghdisi RastkarRuppa Thulasiram João Sousa Naveed Tahir Yaqi Ti Norikazu Takahashi Igor Rocha de Sousa Lima Tiago Parvathaneni Naga Srinivasu Ricardo Takahashi Nie Tie-zheng Gautam Srivastava Ryo Takano Zoran Tigani Vladimir Stanovov Alvaro Talavera Renato Tinós Peter Steiner **George Tambouratzis** Ravi Tlwari Branko Šter Yanyan Tan Sadhana Tiwari Hamid Tizhoosh Christoph Steup Chunhui Tan Stephan C. Stilkerich Jihene Tmamna **Benying Tan** Thomas Stützle Xavier Tan Stefania Tomasiello Nan Su Ryoji Tanabe Haluk Topcuoglu Xingzhe Su Lixin Tang Hiroyuki Torikai Shixiang Su Zhenjun Tang Jim Tørresen Kenya Sugihara Run-Xuan Tang Cesar Torres-Huitzil Indra Adji Sulistijono Shanshan Tang Hue Tran Liang Sun Ho-Kin Tang Thanh Tran Yu Sun Peiwang Tang Thomas Trappenberg Yundong Sun Uwe Tangen Martin Trefzer Chenfei Sun Sichen Tao Huy Trinh Linghui Sun Jun Tao Prasun Tripathi Yuwei Sun Jianhua Tao Chun-Wei Tsai Black Sun Qian Tao Nikolaos Tsakiridis Fengyang Sun Ivan Tashev Markos Tsipouras Peng Sun Sotiris Tasoulis Toshiyuki Tsuchiya Eva Tuba Stanislav Vrána Chao Wang Milan Tuba Sasa Vrkalovic Chengji Wang Pavlo Tymoshchuk Nobuhiko Wagatsuma Haizhou Wang Andy Tyrrell Hiroki Waida Hongbo Wang Vojtech Uher Joojo Walker Jiankai Wang Arijit Ukil Michael Walters Junjie Wang Norimichi Ukita Oian Wan Lin Wang Qurrat Ul Ain Sheng Wan Siqi Wang Fida Ullah Ying Wan Yuehai Wang Parth Upadhyay Donghua Wang Ziyang Wang Julia Upton Hanyang Wang Bo Wang Pascal Urard Yongyu Wang Jianming Wang Vivekanand V Chunyu Wang Jiayang Wang Julio Valdes Hongfeng Wang Jiayi Wang Fevrier Valdez Xuehe Wang Linlin Wang César Valencia **Hao Wang** Tengfei Wang Maria Valeriano JingQiu Wang Xianzhi Wang Lorenzo Valerio Bing Wang Yiran Wang Joris Vankerschaver Rui Wang Zongwei Wang Swetha Varadarajan Zi-Jia Wang Hongzhi Wang Zdenek Vasicek Yuping Wang Jinwei Wang Kristina Vassiljeva Shuai Wang Mei Wang Ekta Vats Jingyao Wang Pengkun Wang Víctor Vázquez-Báez Jung-Hua Wang Xiaoning Wang Santiago Velasco-Forero Zihan Wang Yuchen Wang Marley Vellasco Chenlu Wang Yuqing Wang Damiano Verda H Wang Jianzong Wang Chiara Verdone Jiajun wang Wang Qian Wang Francisco Javier Veredas Navarro Wendong Wang Jingya Wang WenJing Wang Heidrich-Meisner Verena Linhuang Wang Jorge Vergara Lipo Wang Wenjun Wang Francisco Javier Veredas Navarro Jingya Wang Wendong Wang Heidrich-Meisner Verena Linhuang Wang WenJing Wang Jorge Vergara Lipo Wang Wenjun Wang Wang Wenjun Wang Martin Versen Shaopan Wang Yanhao Wang Petra Vidnerova Tianhai Wang Zhixiao Wang Eduardo Viegas Xilu Wang Yinchu Wang Adam Viktorin Xinlei Wang ChengLiang Wang Julien Vitay Xupeng Wang Di Wang Autilia Vitiello Yefei Wang Yoshikazu Washizawa An Vo Zhenyu Wang Feng-Feng Wei Constantin Volosencu Zixu Wang Hongxi Wei Fernando Von Zuben Bangchao Wang Hua Wei Lai WeiXing XiNing XueZeming WeiYaoxin XiaJun Yan Yuning Wei Chao Xia Longfei Felix Yan Jiahong WeiJingyuan XiaYunyi YanWenhong WeiXiaolei XiaHong YanTzer-Jen WeiXuan XiaYan YanChengxin WenKexin XiangHan Yan Dongchao Wen Tianyu Xiang Jiangpeng Yan Juyang Weng Chen Xiangyong Rui Yan Lai Weng Kin Zhijiao Xiao Gabriela Yáñez Pérez Tim Whitaker Meng Xiao Qi-Te Yang Michał Wieczorek Jinying Xiao Shengxiang Yang Kevin Wilkinghoff Mingrui Xiao Cuie Yang Richard Wilson Pan Xiao Shangshang Yang Katarzyna Wiltos Zhiwen Xiao Zonghao Yang Megan Witherow XiongShen Xie Fengxiang Yang Marilyn Wolf Ying Xie Luyi Yang Man Leung Wong Bo Xie Mengyu Yang Ka-Chun Wong Diye Xin Congxian Yang Kok-Wai Wong Jinwei Xing Dingcheng Yang MinJae Woo Luolin Xiong Dongping Yang Brendon Woodford Qingzheng Xu Qinmin Yang Qingzheng Xu Qinmin Yang Kampol Woradit Meng Xu Jian Yang Marcin Woźniak Peilan Xu Ziyuan Yang **Chester Wringe** Chaonong Xu Jie Yang Yue Wu Xinxin Xu Haitian Yang Huyu Wu Li Xu Jingbo Yang Tianyu Wu Li Xu Jingbo Yang Tianyu Wu Longfei Xu Li Yang Yifan Wu Chaoyi Xu Song Yang Yunong Wu Dejun Xu Zhiyu Yang Ziyu Wu Fanchao Xu Kainan Yao Nier Wu Isaac Xu Feiyu Yao Xu Wu Xingjian Xu Jiawei Yao Khalifa Yaser YiFei Wu Dongqi Xu Jianhua Xu Danial Yazdani Yujia Wu Zhiwei Ye Fengge Wu Jiapeng Xu Tong Wu Jingzehua Xu Xuming Ye Hongjie Wu Xiaofei Xu Shanding Ye Xiaojun Wu Xiaoming Xue Chung-Hsing Yeh Wenxuan Wu Hongcheng Xue Christian Yeo Ping Yi **Guohang Zeng** Zijun Zhang Hanxi Yin Pinxian Zeng Dongxu Zhang Fan Yin Lingtao Zeng Jiawei Zhang Mengyu Yin Marco Zennaro **Tianliang Zhang** LiLiang Yin Minghui Zhai Tianxiao Zhang Jun Yoneyama Yanlong Zhai Xiaobin Zhang Kusunoki Yoshifumi Zhi-Hui Zhan Xusheng Zhang Zhou You Kun Zhan Canlin Zhang Haochen You **Huixin Zhan Enzhi Zhang** Hua Yu Hengzhe Zhang Lei Zhang Xiao-Hua Yu Huayan Zhang Li Zhang Lianbo Yu Xuerui Zhang Lin Zhang Kunjie Yu Yuze Zhang Qinyi Zhang Dongjin Yu Shengxin Zhang Tianyun Zhang Haowen Yu Shuyan Zhang Wei Zhang Jiaheng Yu Jingyue Zhang Weiyu Zhang Weizhan Zhang **Fangfang Zhang** Jiaming Yu Yang Yu Xingyi Zhang Xin Zhang Hong Yu Chuangliang Zhang **Xulong Zhang** Jialin Yu Yichi Zhang Geng Zhang Yi Yu Yinyan Zhang Haopeng Zhang Zehui Yu Ronghuan Zhang Yuanyuan Zhang Hang Yu Shuo Zhang Zhenguo Zhang Zhang Yu qing Tuo Zhang Xiaoqing Zhang Imam Yuadi Yi fei Zhang Zhiwei Zhao Gonglin Yuan Yingjie Zhang Zhengzhong Zhao Wenhao Yuan Fan Zhang Qinghua Zhao Zijian Yuan Jian Zhang Yansong Zhao Wangyang Yue Ling Zhang Yijun Zhao Yutao Yue Zhaoyun Zhang Wen Zhao Yuan Yue Zhibin Zhang Jing Zhao Hoyin Yue Zuowei Zhang Xingyu Zhao Zhiyi Zhao Tang Yuzhou Jianxin Zhang Daniela Zaharie Ru Zhang Liang Zhao Munazza Zaib Sinuo Zhang Linjiang Zheng Daniel Zambrano-Gutierrez Min Zhang Zilong Zheng Aleš Zamuda Peng Zhang Wenbo Zheng Raman Zatsarenko Xiao-Feng Zhang Yi-Zhen Zheng Ricardo Zebulum Yang Zhang Shen Zheng Jinshan Zeng Yujia Zhang Yu Zheng Rui Zhong Muyao Zhong Jinghui Zhong Fangcen Zhong Bowen Zhou Yan Zhou Yu Zhou Chunpeng Zhou Lijuan Zhou Wenjun Zhou Dong Zhou Xiabing Zhou Jiang Zhou Yexu Zhou Chenhong Zhou Lihua Zhou Qiyuan Zhu Mingyan Zhu Cheng Zhu Qinrui Zhu Weiran Zhu Jie Zhu Lijian Zhuang Yuanya Zhuo Maximilian Zilke Francesco Zito Yishan Zou An-Min Zou Dongmian Zou Binghui Zou Shicheng Zu Pedro Zufiria Andrea Zugarini Nianming Zuo Jiankai Zuo ## **Venue Map** # Poster Floor Map 501 & 502 # **Conference Sponsors** # **Gold Sponsor** # **Silver Sponsors** **Support By** # City of Yokohama **Technical Co-Sponsors** # **WCCI Plenary Speakers** Marios M. Polycarpou "Connecting Computational Intelligence to the Cyber-Physical World" University of Cyprus **Abstract:** The development of cyber-physical systems with multiple sensor/actuator components and feedback loops has given rise to advanced automation applications, including energy and power, intelligent transportation, water systems, manufacturing, etc. Traditionally, feedback control has focused on enhancing the tracking and robustness performance of the closed-loop system; however, as cyber-physical systems become more complex and interconnected and more interdependent, there is a need to refocus our attention not only on performance but also on the resilience of cyber-physical systems. In situations of unexpected events and faults, computational intelligence can play a key role in improving the fault tolerance of cyber-physical systems and preventing serious degradation or a catastrophic system failure. The goal of this presentation is to provide insight into the design and analysis of intelligent monitoring methods for cyber-physical systems, which will ultimately lead to more resilient societies. Bernadette Bouchon-Meunier "Can intelligent systems be conscious?" CNRS-Sorbonne Université **Abstract:** The concept of consciousness is complex and takes various forms. The fact that an intelligent system can be conscious has long been discussed and the questions are getting louder as we see systems springing up everywhere that seem capable of dialoguing with humans in a very natural way. We propose to look at several facets of consciousness, from phenomenological consciousness linked to perceptions to access consciousness, which gives us information about one's actions. In 1982 already, Marvin Minsky 1 was considering that self-conscious systems could be done by providing machines with ways to examine their own mechanisms while they are working. Then Jacques Pitrat 2 in 2009 claimed that, for a conscious artificial being, the possibility of monitoring its own thought enables it to explain its decisions so that they can be accepted by others, which goes in the direction of eXplainable Al. A recent study 3 provides a list of indicator properties derived from scientific theories to assess consciousness for an intelligent system. We offer an overview of some interesting aspects of consciousness from the angle of intelligent systems, which can be different from human consciousness, and we wonder to what extent a present or a future system can have such a form of consciousness and what the advantages and drawbacks are. Simon See "Accelerating Science Discovery - High Performance Simulation, Math and AI" Nvidia **Abstract:** Modern scientific discovery relies on advances in data science, mathematics, and artificial intelligence (AI). The combination of these disciplines has led to significant breakthroughs in various fields, including materials science, drug discovery, and chip design. This talk discusses the role of AI-enriched simulation in accelerating science discovery and the use of high-performance computing, math, and AI to drive innovation. Key aspects of Al-enriched simulation include: <u>Accelerating the discovery process</u>: Al-enriched simulation uses AI to identify the most promising simulations to run on a massive dataset, reducing the computational expense and saving precious time and resources. <u>Automating complex simulations</u>: Al-enriched simulation makes complex, predictive simulations automatable and user-friendly for researchers without deep computational expertise, removing a critical research bottleneck <u>Reducing the number of simulations needed</u>: By using AI to analyze data and determine the most promising simulations, AI-enriched simulation can speed up screening by factors of 10-100 times. <u>Leveraging AI and machine learning</u>: AI-assisted simulations use neural networks and machine learning algorithms to predict complex properties of materials and other systems, bypassing expensive physics-based routines and accelerating the discovery process. <u>Collaborative research</u>: All expertise, such as that found at Berkeley Lab, can be combined with traditional research methods to apply All to various scientific problems, leading to innovative solutions and new discoveries. In summary, the future of scientific discovery lies in the integration of high-performance simulation, math, and AI. By harnessing the power of these technologies, researchers can accelerate the discovery process, automate complex simulations, and unlock new possibilities in various fields. Saori Tanaka "Utilization of large-scale brain image database for digitalization of psychiatric and neurological disorders" NAIST, ATR **Abstract:** In recent years, neuroimaging databases for psychiatric and neurological disorders have enabled users to find common and disease-specific features and redefine disease spectra using data-driven approaches. In the Brain/MINDs beyond (2018-2023), the neuroimaging database projects have established the multiple sites, multiple disorders MRI database. A remarkable feature of this database is the traveling-subjects dataset; each participant was scanned at each multisite. This led to the development of a harmonization method to reduce site differences and the development of a generalizable diagnostic marker with brain networks of major depressive disorder (Yamashita, et al., 2020). This database has expanded to 14 disorders and over 16 sites, and over 5,000 MRI data will be collected by the end of the project. This will be the largest MRI database of multiple neurological and psychiatric disorders from multiple sites. In addition, this database includes longitudinal patient data, allowing for the evaluation of treatment effects. This database is expected to lead to the stratification and the development of new treatment methods. Here, as a potential use of the database, I will suggest an integration with approaches based on the computational theory of the brain in addition to data-driven approaches. Computational neuroscience studies understanding the brain mathematically focused on the neural mechanisms of information processing. In recent years, these approaches have been applied to understanding psychiatric disorders. I will show some previous studies using large-scale behavioral data and computational models of psychiatric disorders and demonstrate possibilities of fusion with computational models and neuro-behavioral databases. Akira Oyama "Multiobjective evolutionary optimization in space engineering and spin-off to industry" Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency **Abstract:** Multiobjective evolutionary computation (MOEC) is getting popular in Japan because it has various advantages such as capability of finding wide variety of Pareto-optimal designs. In Japan Aerospace Exploration Agency (JAXA), I have been engaged in multiobjective design optimizations in space engineering such as rocket engine turbopump design, spacecraft trajectory design, reusable space transportation system design, spacecraft landing system design, selection of Moon landing site. In this talk, I will introduce some examples of these applications of MOEC in JAXA. Then, I will introduce spinoff of the multiobjective design optimization technology to industry. Here, I will present the collaboration work with Mazda, Kobe University, and Hiroshima University for aerodynamic car shape design and the collaboration work with Central Japan Railway Company for aerodynamic and aeroacoustics design of superconducting maglev. Finally, I will discuss current issues in using MOEC for real-world design problems and our recent approaches to overcome these issues. #### **Keynote Speakers** # **IJCNN Keynotes Speakers** Johan Suykens "Least Squares Support Vector Machines and Deep Learning" Katholieke Universiteit Leuven **Abstract:** While powerful architectures have been proposed in deep learning, with support vector machines and kernel-based methods solid foundations have been obtained from the perspective of statistical learning theory and optimization. Simple core models were obtained within the least squares support vector machines framework, related to classification, regression, kernel principal component analysis, kernel canonical correlation analysis, kernel spectral clustering, recurrent models, approximate solutions to partial differential equations and optimal control problems, etc. The representations of the models are understood in terms of primal and dual representations, respectively related to feature maps and kernels. The insights have been exploited for tailoring representations to given data characteristics, both for high dimensional input data and large scale data sets. One can either work with explicit feature maps (such as e.g. convolutional feature maps) or implicit feature maps through the kernel functions. Within this talk we will mainly focus on new insights connecting deep learning and least squares support vector machines. Related to Restricted Boltzmann machines and Deep Boltzmann machines we show how least squares support vector machine models can be transformed into so-called Restricted Kernel Machine representations. It enables to conceive new deep kernel machines, generative models, multi-view and tensor based models with latent space exploration, and obtain improved robustness and explainability. On most recent work, we will explain how the attention mechanism in transformers can be seen within the least squares support vector machine framework. More precisely it can be represented as an extension to asymmetric kernel singular value decomposition with primal and dual model representations, related to two feature maps (queries and keys) and an asymmetric kernel. In the resulting method of "Primal-Attention" a regularized loss is employed to achieve low-rank representations for efficient training in the primal. Finally, these newly obtained synergies are very promising in order to obtain the bigger and unifying picture. Several future challenges will be outlined from this perspective. Masashi Sugiyama "Towards More Robust and Reliable Machine Learning" Riken, The University of Tokyo **Abstract:** In statistical machine learning, training data is often full of uncertainties due to insufficient information, label noise, and bias. In this talk, I will give an overview of our research on reliable machine learning, including weakly supervised learning, noise-robust learning, and transfer learning. Then, I will discuss our recent challenges to integrate these approaches and develop a generic machine learning methodology with fewer modeling assumptions. Plamen Angelov "Learning from Data in post-Foundation Models Era: bringing learning and reasoning together" Lancaster University **Abstract**: Deep Learning continues to attract the attention and interest not only of the wider scientific community and industry, but also society and policy makers. Fuelled by the remarkable generalisation and separability capabilities offered by the transformers (e.g. ViT), Foundation Models (FM) offer unparalleled feature extraction opportunities. However, the mainstream approach of end-to-end iterative training of a hyper-parametric, cumbersome, and opaque model architecture led some authors to brand them "black box". This degrades their generalisation, requires many labelled data, compute power and related energy, etc. costs. Cases were reported when such models can give wrong predictions with high confidence - something that jeopardises the safety and trust. Deep Learning is focused on accuracy and overlooks explainability and the semantic meaning of the internal model representations, reasoning and its link with the problem domain. In fact, it shortcuts from the large amount of (labelled) data to the predictions bypassing and substituting the causality with correlation and error minimisation. It relies on assumptions about the data distributions that are often not satisfied and suffers from catastrophic forgetting when faced with continual and open set learning. Once trained, such models are inflexible to new knowledge. They are good only for what they were originally trained for. Indeed, the ability to detect unseen and unexpected and start learning this new class/es in real time with no or very little supervision (zero- or few- shot learning) is critically important but is still an open problem. The challenge is to fill the gap between the high levels of accuracy and the semantically meaningful solutions. This talk will focus on "getting the best from both worlds": the powerful latent feature spaces formed by pre-trained deep architectures such as transformers combined with the interpretableby-design (in linguistic, visual, semantic, and similarity-based form) models. One can see this as a fully interpretable frontend and a powerful backend working in harmony. Examples will be demonstrated from the latest projects from the area of autonomous driving, Earth Observation, health and a set of well-known benchmarks. Yukie Nagai "Predictive Processing: Illuminating and Modeling Cognitive Development" The University of Tokyo **Abstract**: Cognitive development is an intricate and multifaceted process that has captivated researchers for decades. Human abilities related to perception and action continually evolve during development, exhibiting remarkable diversity among individuals. This presentation explores the concept of predictive processing as a promising unified theory for illuminating and modeling cognitive development. Rooted in neuroscience, predictive processing offers a unique perspective for understanding how the brain constructs its perception of the world. The core idea posits that the brain continually generates internal models to predict the world and refines them in response to sensory input to minimize prediction errors. This dynamic process underlies the acquisition of cognitive abilities, from self-recognition to goal-directed actions, and even fosters the emergence of social behaviors like imitation and altruism, facilitated through multimodal predictions. Moreover, this presentation sheds light on how disruptions in predictive processing lead to individual diversities, including developmental disorders. By emphasizing the concept of predictive processing and showcasing its practical application in robotic experiments, we aim to demonstrate its potential as a unifying framework for cognitive development. This presentation opens doors to exciting opportunities for creating more adaptive and intelligent systems. Divyashree-Shivakumar Sreepathihalli "Keras, A shortcut to master AI" Google **Abstract:** Discover the transformative capabilities of the Keras 3 API. Delve into deep learning best practices, where you'll gain insights into crafting uncomplicated models and executing them with your preferred backend—be it PyTorch, TensorFlow, or JAX. Explore the dynamic potentials of KerasNLP and KerasCV modules, unveiling the art of constructing powerful Al applications. Witness the seamless creation of generative image and language models, empowering you to achieve remarkable feats with just a few lines of code. # **CEC Keynotes Speakers** Yew Soon Ong "Multifactorial Evolutionary Computation with Applications in Machine Learning and Scientific Discovery" Nanyang Technological University **Abstract:** The human mind demonstrates an exceptional capacity to manage multiple tasks seemingly simultaneously while also exhibiting the ability to leverage knowledge acquired from solving one task and apply it to different yet related challenges. Given the exploding volume and variety of information streams, the opportunity, tendency, and (even) the need to address different tasks in quick succession is unprecedented. Yet, the design of population-based algorithms of evolutionary computation (EC) has traditionally focused on addressing a singular task (or problem) at a time. It is only recently that the idea of multifactorial evolution has come to the fore, leading to the growing popularity of transfer and multitask EC. The nomenclature signifies a search involving multiple optimization tasks, with each task contributing a unique factor influencing the evolution of a population of candidate solutions. The multifactorial evolutionary algorithm (MFEA) is distinguished by implicit genetic transfers between tasks, promising free lunches in optimization by reusing knowledge from related problems. The method makes possible the rapid discovery of diverse, high quality outcomes, and potentially out-of-the-box solutions through inter-task genetic crossovers. In this talk, some of the latest algorithmic advances of MFEAs shall be presented, encompassing both single-objective and multiobjective variants. The impact potential of algorithms designed to leverage multiple related tasks shall be showcased in the field of machine learning (through the creation of diverse sets of small but specialized models extracted from large pre-trained architectures) and in AI for scientific discovery (by facilitating fast simulations of multiple instantiations of the fundamental laws of nature). Multiobjective multitasking as a means to arrive at sets of Pareto optimal solution sets in other application domains shall also be highlighted. Handing Wang "Challenges in Data-Driven Evolutionary Optimization" Xidian University **Abstract:** Many real-world problems that are optimized based on data collected from historical records, numerical simulations, or physical experiments are called data-driven optimization problems. The interdisciplinary research area of data-driven evolutionary optimization involves techniques in data science, machine learning, and evolutionary algorithms. In an evolutionary data-driven optimization framework, data will be collected at first. Then, surrogate models, which are machine learning models, are built from the data to approximate the real objective functions and / or constraint functions. Given the approximated objective or constraint functions, evolutionary algorithms can then be applied to perform optimization. This talk will highlight the current challenges of data-driven evolutionary optimization based on the view of real-world applications. Also, the techniques to address those challenges will be introduced. Jialin Liu "Designing and playing games with computational intelligence" Southern University of Science and Technology (SUSTech) **Abstract:** Games provide an ideal playground for AI researchers to study, explore, evaluate, and experiment with different ideas in a controllable and safe environment. As an important application and product, games also involve complex decision-making and creative design tasks. Games have played important roles in the development of computational intelligence, while different computational intelligence methods have been widely applied to playing and designing games. In this talk, I will show how different computational intelligence methods (e.g., generative models, reinforcement learning and evolutionary computation) could be harnessed to procedurally generate new game contents, from game levels to accompanying music that correlates with game difficulties. In addition, I will also show how novel computational intelligence techniques, especially evolutionary reinforcement learning, could be used to play a range of different games. I will conclude the talk by discussing current challenges and potential research directions. Mengjie Zhang "Evolutionary Machine Learning: 50 Years of Progress" Victoria University of Wellington **Abstract:** Evolutionary machine learning have been very popular over the recent years. In this talk, I will firstly provide a brief overview of the history of evolutionary machine learning with the major developments over the past 50 years, then focus on the main paradigms of evolutionary machine learning and their successes in classification, feature selection, regression, clustering, computer vision and image analysis, scheduling and combinatorial optimisation, deep learning, transfer learning and explainable/interpretable machine learning. The main applications, challenges and lessons as well as potential opportunities will be also discussed. Tobias Rodemann "Trust in Optimization Algorithms – The End User Perspective" Honda Research Institute Europe **Abstract:** Evolutionary Algorithms have a potentially wide-spread usage. They can deal with various types of design parameters, constraints and objectives; non-linear, discontinuous, noisy fitness landscapes and many, even conflicting objectives can be handled. There are numerous open- source software packages for quickly applying EA methods on various problems. In practice, however, EAs are not used as frequently as we would hope. In this talk I would like to provide some insights from industrial projects and focus especially on the perspective of the end user. I will argue that hot topics in ML like trust, transparency and explainability, also need to be considered in Computational Intelligence. # **FUZZ-IEEE Keynotes Speakers** **Qiang Shen** "When There Is Little Data Can AI Still Work? – Approximate Reasoning with Knowledge Interpolation and its Applications" Aberystwyth University **Abstract:** All is on the brink of revolutionising industries globally, having made significant advancements in recent years. These achievements are primarily attributed to the use of deep learning techniques that process vast amounts of data. Yet, a pivotal question emerges when faced with limited data for a new problem, especially if this data is ambiguously characterised. Can AI maintain its efficacy under these constraints? This presentation delves into contributions addressing this query, highlighting how fuzzy rule interpolation (FRI) enables approximate reasoning in situations marked by sparse or incomplete knowledge. This is particularly relevant when traditional rule-based inference mechanisms falter because observations do not align with existing rules. Research into FRI techniques has been extensive within the realm of computational intelligence, yielding multiple methodologies. This presentation will centre on a prominent subset, Transformation-based FRI (T-FRI), which operates by mathematically modifying rules that bear resemblance to unmatched observations. Every technique within this category applies linear transformations of the nearest rules, automatically chosen relative to an unmatched observation. The talk will kick off with an exploration of the foundational T-FRI approach and segue into a concise overview of its expanded repertoire: adaptive T-FRI, backward T-FRI, higher-order T-FRI, dynamic T-FRI, and weighted T-FRI. Each addresses certain shortcomings inherent to the original method. Subsequently, real-world applications of these methodologies will be showcased, exemplifying their potency in tackling formidable challenges in domains like network security and medical diagnosis. These cases will underscore AI's capability to function effectively even with incomplete knowledge and ambiguous data. The presentation will wrap up with a glimpse into prospective advancements in this crucial research domain. Francisco Herrera "Fuzzy Systems to Support Safe and Trustworthy Artificial Intelligence" University of Granada **Abstract:** Artificial Intelligence (AI) has matured as a technology, AI has quietly entered our lives, and it has taken a giant leap in the last year. Image generative AI models or the latest evolutions of large language models have meant that AI has gone, in just a few months, practically from science fiction to being an essential part of the daily lives of hundreds of millions of people around the world. This emergence goes hand in hand with a growing global debate on the ethical dimension of AI which raises the need for responsible, fair, inclusive, trustworthy, safe, transparent and accountable frameworks. Two essential concepts emerge in this scenario. 1) Trustworthy AI, supported on the legal, ethical, and technical robustness pillars, including seven technical requirements. 2) AI safety, which encompass machine ethics and AI alignment, aiming to make AI systems moral and beneficial, and robustness technical problems (including monitoring systems for risks, robustness against adversaries, detecting malicious use, attacks and backdoors, ...) Safe and trustworthy AI is a critical area to meet upcoming regulations, the necessary auditability metrics for their analysis and compliance, address ethical issues, manage risk analysis in human-Al system interaction, and ensure the technical soundness of responsible Al systems (auditability and accountability during its design, development and use). This talk addresses the role that fuzzy systems can play in supporting the technical requirements of safe and trustworthy AI. The use of fuzzy sets and systems can support auditability and accountability metrics, to address different technical requirements for trustworthy (explainability, privacy and federated learning, fairness, ...), and to design fuzzy monitoring systems for robustness, ... Finally, we should delve into another essential aspect, discuss and think about the development of fuzzy technologies that fit into the design requirements for auditability and design frameworks for accountable AI systems. This is a great opportunity to explore in today's emerging safe and trustworthy AI scenario. Jim Tørresen "AI Ethics – Challenges and Opportunities" University of Oslo **Abstract:** Artificial intelligence (AI) has entered an increasing number of different domains. A growing number of people – in the general public as well as in research – have started to consider a number of potential ethical challenges and legal issues related to the development and use of AI technologies. This keynote will give an overview of the most commonly expressed ethical challenges and ways being undertaken to reduce their negative impact. Among the most important challenges are those related to privacy, fairness, transparency, safety and security. Countermeasures can be taken first at design time, second, when a user should decide where and when to apply a system and third, when a system is in use in its environment. In the latter case, there will be a need for the system by itself to perform some ethical reasoning if operating in an autonomous mode. This keynote will introduce some examples from our own and others' work and how the challenges can be addressed both from a technical and human side with special attention to problems relevant when working with AI research and development. AI ethical issues should not be seen only as challenges but also as new research opportunities sustainable, contributing to more socially beneficial services and systems. Gabriella Pasi "Large Language models: contextual knowledge matters." University of Milano Bicocca **Abstract:** The last few years have witnessed an increasing development of generative AI and its applications, which culminated in the large-scale sharing of ChatGPT on the Web, with its related potentials, risks and limitations. Large Language Models are one of the possible technologies at the basis of generative AI; they are nowadays successfully applied to a variety of NLP tasks, among which are machine translation, conversational agents, and several others. Despite this, LLMs are affected by some limitations, among which a lack in accounting for contextual knowledge related to the task at hand. A research trend is to inject such knowledge (in-context) into LLMs via prompting techniques. A more recent and promising research direction is to make use of neuro-symbolic approaches, to better model and control the process. In this talk, after a short introduction to LLMs, I will present some possible approaches finalized to this latter aim. I will also present the research issue of defining personal language models, i.e. LLMs tailored on the language of specific users or groups of users. Jie Lu "Fuzzy Machine learning" University of Technology Sydney **Abstract:** The talk will present the concepts, methodologies, and algorithms of fuzzy machine learning, including fuzzy transfer learning, fuzzy concept drift detection and adaptation, and fuzzy recommender systems. It will also present how the fuzzy machine learning techniques can effectively support data-driven prediction and decision-making in uncertain, complex, and dynamic situations. #### **Online Invited Speakers** Hussein Abbass "Explaining Explainable Artificial Intelligence" School of Systems and Computing, University of New South Wales **Abstract:** Explainable Artificial Intelligence (XAI) is one of the hottest topics in AI today. Ironically, one would think that a motivation for the importance of XAI is for people to better understand AI and the AI models in use. However, diversity of opinions and perspectives on XAI has created more ambiguities and confusions than helping in any meaningful way. To even explain what an explanation is, some papers in the literature have confused the term, making it close to impossible to newcomers to the field to find coherence or aspire for consistency. The diversity is reaching unhealthy state with orthogonal definitions and taking antonyms and incommensurable concepts making them synonyms. The aim of this presentation is to disambiguate XAI, taking the audience into a trip that will start from the basics, travel through contemporary literature, land on current challenges of XAI and providing food for thoughts along the way. My aim is not to unify XAI or create a universal agreement. My aim is to maximise people understanding of XAI and to have the basis for those who disagree with me to communicate their disagreement in concise statements. Erik Cambria "Seven Pillars for the Future of AI" NTU Singapore **Abstract:** In recent years, AI research has showcased tremendous potential to impact positively humanity and society. Although AI frequently outperforms humans in tasks related to classification and pattern recognition, it continues to face challenges when dealing with complex tasks such as intuitive decision-making, sense disambiguation, sarcasm detection, and narrative understanding, as these require advanced kinds of reasoning, e.g., commonsense reasoning and causal reasoning, which have not been emulated satisfactorily yet. To address these shortcomings, we propose seven pillars (<a href="https://sentic.net/seven-pillars-for-the-future-of-artificial-intelligence.pdf">https://sentic.net/seven-pillars-for-the-future-of-artificial-intelligence.pdf</a>) that we believe represent the key hallmark features for the future of AI, namely: Multidisciplinarity, Task Decomposition, Parallel Analogy, Symbol Grounding, Similarity Measure, Intention Awareness, and Trustworthiness. # Workshops #### **IJCNN Workshops** Workshop: Towards Realizing Whole-Brain Computational Models Guided by Cognitive Models Organizer(s): Akira Taniguchi, Yoshimasa Tawatsuji, Junya Morita **Date:** June 30, 2024 **Time:** 8:30 – 16:10 **Room:** 314 Abstract: In recent years, there has been a focused effort to develop Whole Brain Computational Models (WBCMs), aiming to represent the entire brain's functions and contribute to creating artificial intelligence with human-level capabilities. WBCMs involve not only neuroscientific but also cognitive models, especially in constructing a cognitive architecture for consistency. Cognitive models enhance interpretability in implementing WBCMs into AI agents, providing insight into thought processes. This approach, resembling human cognition, offers potential psychological reassurance to users. The discussion about the relationship between cognitive models and WBCMs is linked to AI alignment debates, crucial as powerful AI systems develop. The workshop aims to discuss methodologies to realize WBCMs, emphasizing the role of cognitive models. Workshop: IEEE Humanitarian Activities Workshop with AI Technologies Organizer(s): Kojiro Nishimiya; Kohei Ohno; Mayumi Suzuki; Toshihiko Sugie; Yasuhiro Takishima **Date:** June 30, 2024 **Time:** 8:30 – 12:40 **Room:** 418 Abstract: A workshop to discuss Humanitarian Activity from a broad perspective, including global warming, renewable energy, and the SDGs, with participants. The workshop is divided into two sessions. In the first half, each participant will give a presentation on an issue broadly related to Humanitarian Activity, using his or her own technology to find a solution. In the second half, participants will be divided into small groups for discussion, which may include in-depth discussions of the presentations by the presenters in the first half, or discussions of solutions to the other Humanitarian Activity issues using the participants' own technologies. This workshop is intended for those who are interested in Humanitarian Activity but have not yet started full-scale research, and for those who are motivated by the opinions of others and wish to apply them to their future research. Therefore, student presentations are also welcome. We also welcome those who are already conducting full-scale research on Humanitarian Activity. As for technology, the workshop is open to all those who are broadly involved in computing technology, such as neural networks, fuzzy and Evolutional computing, etc. This workshop is organized by the IEEE Tokyo Section SIGHT (Special Interest Group on Humanitarian Technology). **Workshop:** International Workshop on Forging Trust in Artificial Intelligence Organizer(s): Nistor Grozavu; Nicoleta Rogovschi; Corina Besliu; Seiichi Ozawa; Aikaterini Tzompanaki; Dimitris Kotzinos **Date:** July 2, 2024 **Time:** 8:20-18:40 **Room:** 211+212 **Abstract:** Establishing and upholding trust in AI systems is an imperative pursuit as Machine Learning becomes intricately interwoven into our daily lives. The workshop, "Forging Trust in Artificial Intelligence" brings together a group of experts and researchers from diverse subfields, converging on the exploration of how transparency, fairness, privacy, and security collectively contribute to making machine learning trustworthy. By uniting experts across these pivotal disciplines, this workshop illuminates the best practices that not only enhance the trustworthiness of AI but also reinforce its ethical foundations. Ensuring trust in machine learning is necessary for unlocking its potential while minimizing risks. This is especially true in the current environment, where the constant expansion of data sources aligns with a growing interest in using them to develop comprehensive and universally applicable AI systems. This interest highlights the need to address issues related to transparency, fairness, privacy and security, particularly in the area of multimodal learning, where various data types and learners are combined to create sophisticated, but often opaque AI systems. Within this context, establishing best practices for data integration is essential to ensure transparency and interpretability of AI systems based on diverse learners. Fairness considerations, on the other hand, may involve identifying and addressing potential biases from different modalities. This includes exploring approaches to mitigate their impact and leveraging fair representation learning when integrating information from sources with varying bias levels. By addressing such issues alongside data privacy and security concerns, this workshop aims to contribute to the development of ethical, transparent, and secure AI that has a positive impact on our global society's well-being. Workshop: Advances in Optimizing and Transfer Learning Models Organizer(s): Issam Falih; Chafik Samir **Date:** June 30, 2024 **Time:** 16:20 –18:20 **Room:** 213 **Abstract:** Proposal This workshop will cover original and pioneering contributions, theory as well as applications on optimizing, combining, and transferring learning models, and aim at an inspiring discussion on the recent progress and the future developments. Learning models, especially those based on different paradigms, can be combined and optimized for improving their accuracy. Thus, each learning method imposes specific modeling from observations which translates to a set of constrains. However, such assumptions may lead to weak and non adapted learners if they are not satisfied. In many cases, the ill-posed of the learning process and the data partiality of observations make the optimization methods converge to different solutions and subsequently fail under various circumstances. The workshop will be a good opportunity, to discuss recent advances in optimizing and learning models. Furthermore, the effectiveness of these methods will be discussed considering the concepts of diversity and selection of these approaches. The workshop will strive to bring together the practitioners of these approaches in an attempt to study a unified framework under which these interactions can be studied, understood, and formalized. Authors of the most insightful papers already accepted for publication, will be invited to submit an extended version of their work to a Special Issue of the Computational Intelligence journal (IF: 2.8). The following is a partial list of relevant topics (not limited to) for the workshop: Transfer learning and domain adaptation Optimization of cost functions for learning Bagging and boosting techniques Collaborative clustering and learning Hybrid systems Mixtures of distributions or experts Modular approaches Multi-task learning Multi-view learning Task decomposition ... Format and activities We propose a Workshop composed of one or two invited speakers, a set of contributed papers and presentations, and a panel discussion around the presented works. Depending on the number of contributions, the workshop's duration would be from half a day to one day. Program Committee members Shantanu Joshi, University of California Los Angeles, USA Razvan Andonie, Central Washington University, USA Rosanna Verde, Università della Campania "Luigi Vanvitelli", Italy Rushed Kanawati, Sorbonne Paris Nord University Seichi Ozawa, Kobe University Engelbert Mephu Nguifo, Clermont Auvergne University Mourad El Hamri, Université Paris cité Nistor Grozavu, CY Cergy Paris University Nicoleta Rogovschi, Paris Descartes University Preliminary list of invited speakers: Shantanu Joshi, University of California Los Angeles, USA Stephane Chretien, University of Lyon, France Razvan Andonie, Central Washington University, USA Workshop: IEEE Brain Workshop on Al for Neurotechnology Organizer(s): Damien Coyle, Cuntai Guan, Nik Kasabov **Date:** June 30, 2024 **Time:** 8:30 – 16:10 **Room:** 301 **Abstract:** Neural Networks and Computational Intelligence researchers have a lot to offer in terms of dealing with the challenges to create robust and trustworthy AI for Neurotechnology. The IEEE Brain AI for Neurotechnology workshop aims to bring together researchers specifically focused on neurotechnology with experts in AI to present and learn about the most recent advances in AI for neurotechnology data gathering and data sharing initiatives federated learning for privacy preserving model training building towards foundational models approaches The workshop, associated with the Institute for the Augmented Human at the University of Bath will provide opportunities for AI and neural networks researchers to contribute to and benefit from improving neurotechnology with the latest advances in AI. The workshop will include a keynote talk, invited speakers, a panel session and a poster session for papers submitted by delegates. Invited speakers will include this working at the cutting edge of applying Deep Neural Network Technologies to process brain data for neurotechnology applications. There are prizes for best papers/poster. According to IEEE Brain from whom we have sought sponsorship for this workshop (http://www.ieeebrain.org/), neurotechnologies represent the next technology frontier — the workshop is supported by the IEEE Brain Technical Community and IEEE CIS. Workshop: Al Innovations for Education: Transforming Teaching and Learning through Cutting- **Edge Technologies** Organizer(s): Irwin King, Danilo Mandic, Eyad Elyan and Zenglin Xu **Date:** June 30, 2024 **Time:** 8:30 – 12:40 **Room:** 423 **Abstract:** In this workshop, we will explore the latest advancements in AI technology, with a particular focus on its applications in education. Our aim is to provide an in-depth understanding of how these innovations can revolutionize content creation, teaching methods, and assessments. Topics may include Augmented Reality (AR), Virtual Reality (VR), Gamification, Generative AI for content creation, language learning, administrative task automation, accessibility, automated grading and assessment systems, and Intelligent Tutoring Systems. We will also discuss the practical challenges and ethical considerations related to integrating AI in education. This includes the potential impact of AI on job roles within the education sector, how AI can complement rather than replace teachers, and the importance of developing AI literacy among educators. The need for ongoing research and development in this field will also be emphasized. The workshop will feature a keynote, a panel discussion, and invited talks. The keynote will underscore the workshop's theme, while the panel will probe into the future of AI in education, exploring potential advancements and their advantages for both educators and students. Invited talks will envision a future where AI holds a substantial role in education and discuss how we can prepare for this change. Remember, the future of education lies at the crossroads of pedagogy and technology. Join us as we venture into this exciting future. The workshop, associated with the Institute for the Augmented Human at the University of Bath will provide opportunities for AI and neural networks researchers to contribute to and benefit from improving neurotechnology with the latest advances in AI. The workshop will include a keynote talk, invited speakers, a panel session and a poster session for papers submitted by delegates. Invited speakers will include this working at the cutting edge of applying Deep Neural Network Technologies to process brain data for neurotechnology applications. There are prizes for best papers/poster. According to IEEE Brain from whom we have sought sponsorship for this workshop (http://www.ieeebrain.org/), neurotechnologies represent the next technology frontier — the workshop is supported by the IEEE Brain Technical Community and IEEE CIS. # **FUZZ-IEEE Workshops** Workshop: Computational Intelligence in Human Informatics Organizer(s): Javier Andreu-Perez; Satoru Hiwa; Tomoyuki Hiroyasu **Date:** June 30, 2024 / July 3, 2024 **Time:** 8:30-12:40 / 14:20 – 18:00 **Room:** 316 / 213 Abstract: This workshop is a multi-conference event focused on Human Informatics. It is designed for researchers engaged in exploring and modelling human data through computational intelligence. This includes data gathered from real-world observations or experimental situations, with the aim of enhancing human-machine interfaces and deepening our understanding of human behaviours or biological processes. It further included computational theories aimed at improving the harmonious integration of AI and intelligent machines with humans. The goal is to enable these technologies to be effectively utilized by humans, to work collaboratively and in tandem with them, and to promote a deeper comprehension and collaboration between artificial intelligence and their human operators. The event will feature presentations by global experts and panel discussions. These sessions will delve into the newest advancements in computational intelligence within this research area. Additionally, there will be a focus on discussing the current challenges and trends in the field. Existing research can also be brought in for discussion with the community. This platform aims to foster a comprehensive exchange of ideas and insights among senior and early-career scientists in this intense field of research. # **CEC Workshops** **Workshop:** Workshop on Computational Intelligence Applications Organizer(s): Hiroyuki Sato, Akira Oyama, Ohta Yoshihiro, Takehisa Kohira, Takakuni Minewaki, and Masaya Nakata. **Date:** July 2, 2024 **Time:** 8:20 - 18:40 **Room:** 213 Abstract: In this workshop, we discuss research related to computational intelligence, mainly evolutionary computation. Computational intelligence is attracting attention as a way to tackle complex and large-scale real-world problems and reduce human intervention. The objectives of this workshop are to share real-world applications using computational intelligence and their methodologies and intensively discuss things that can be, cannot be, and should be done by computational intelligence. Although the main topic is evolutionary computation, other computational intelligence methodologies can be discussed in this workshop to advance the research in this domain further. Each speaker in this workshop can make a presentation with/without paper submission. Organizers will make a proceeding including the submitted papers and share only among the participants of this workshop. Workshop: Workshop on Search and Selection in Continuous Domains Organizer(s): Stephen Chen and Marjan Mernik **Date:** June 30, 2024 **Time:** 14:10 – 18:20 **Room:** 423 **Abstract:** A recurring theme in metaheuristics research is to consider the balance between Exploration and Exploitation. An often forgotten area of research is the effect of Selection on Search/Exploration. It is noted that Selection has the ability to turn any search process into a hill climber by rejecting all exploratory search solutions (and keeping only exploitative solutions). The first goal of this workshop will be to reanalyze current metaheuristics from the perspective of selection (as opposed to exploration and/or an underlying metaphor). Subsequent results/goals include a selection-based taxonomy for the explosion of metaphor-based metaheuristics, tools to accurately measure exploration and the effects of selection on exploratory search solutions, the identification and categorization of selection errors, and suggestions for future methods of selection and metaheuristic design. Workshop: Workshop on Multimodal Optimization for Machine Learning Organizer(s): Jing Liang, Caitong Yue, Kunjie Yu, Ying Bi Date: July 4, 2024 Time: 14:20-18:40 Room: 211+212 **Abstract:** The theme of this workshop is the use of multimodal optimization for machine learning, covering ALL different evolutionary computation-based techniques paradigms for machine learning. The aim of this workshop is to investigate both the new theories and applications in different multimodal optimization paradigms for machine learning. This workshop will bring together researchers and practitioners from around the world to discuss the latest advances in the field and will act as a major forum for the presentation of recent research. Workshop: Privacy-Preserving and Fairness-Aware Optimization Organizer(s): Xilu Wang, Shiqing Liu, Xiangyu Wang, Yaochu Jin, Ulrich Rückert **Date:** July 4, 2024 **Time:** 8:30 – 16:40 **Room:** 213 **Abstract:** Optimization problems widely exist in many economic, scientific and engineering applications. Evolutionary optimization algorithms have been extensively studied and achieved remarkable results in the fields of mathematics, operations research and computer science. A common implicit assumption in most existing optimization methods is that all resources for an optimization task are available and stored on a single device. Unfortunately, the assumption is violated in many applications with the growing storage of personal data and computational power of edge devices. Furthermore, jointly addressing optimization tasks among multiple edge devices with distributed data raises concerns about data security, privacy protection and fairness. As a result, it is crucial to develop new optimization paradigms to leverage the power of distributed computing and storage. Over the past years, federated learning has become a popular machine learning paradigm that can leverage distributed data without leaking sensitive information. This is achieved by constructing a global model by aggregating local models separately trained on different devices/clients using local data. In contrast to federated learning, privacy preserving optimization has received much less attention. For data-driven optimization, it could be affected by data or algorithmic bias and thus generate unfair results: when the objective function values are correlated with real-world rewards (e.g., money), parties may be hesitant to collaborate if they risk incurring smaller real-world rewards than others. Hence, addressing the potential unfairness problems in optimization is also vital for building a positive and sustainable ecosystem, highlighting the need for new optimization techniques. **Workshop:** The Evolutionary Computation in Health (TECH) Organizer(s): Neil Vaughan **Date:** July 1, 2024 **Time:** 14:20 – 16:20 Room: 213 **Abstract:** This Evolutionary Computation for Healthcare workshop (TECH-2024) is multidisciplinary, bringing together Al and Healthcare researchers working in the fields of personalised medicine, medical devices; clinical diagnostics, and patient monitoring by applying advanced genetic and evolutionary computation techniques to address critical problems in digital healthcare and medical applications. The Evolutionary computation for health (TECH) and novel AI solutions, offer the next generation of healthcare solutions, when the demand on health systems and hospitals worldwide is increasingly becoming unsustainable. As the mode of treatment turns from the hospital to the home, there has been a particular focus on AI and EC for personalized medicine in the hope of improving patient care and reducing costs. Topics of interest include (not exhaustive): - Medical imaging - Medical signal processing - Medical text analysis - Clinical diagnosis and therapy - Data mining medical data records - Clinical expert systems - Modelling and simulation of medical processes - Drug description analysis - Genomic-based clinical studies - Patient-centric care - Patient/hospital management optimization # Competitions # **CEC Competition Session 1** **Date:** July 1, 2024 **Time:** 8:20 – 9:40 **Room:** 213 Competition: Competition on Multiobjective Neural Architecture Search Challenge for Real- Time Semantic Segmentation Website: https://www.emigroup.tech/index.php/news/ieee-cec-2024-competition-on- multiobjective-neural-architecture-search/ Competition: Competition on Super Large-scale Multiobjective Optimization for Status Assessment of Measuring Equipment Website: <a href="https://github.com/ChengHust/IEEE-CEC-2024-Competition">https://github.com/ChengHust/IEEE-CEC-2024-Competition</a> # **CEC Competition Session 2** **Date:** July 3, 2024 **Time:** 16:40 – 18:00 **Room:** 419 **Competition:** Competition on Constrained Multiobjective Optimization Website: http://www5.zzu.edu.cn/ecilab/info/1036/1354.htm Competition: Competition on Numerical Optimization (Single/Multi-Objectives, with and without constraints) Website: https://github.com/P-N-Suganthan/2024-CEC Competition: Competition on Fuzzy AI agent for Python game Kessler **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 213 Website: <a href="https://xfuzzycomp.github.io/XFC/">https://xfuzzycomp.github.io/XFC/</a> Competition: 2024 IEEE CIS Student Grand Competition on Computational Intelligence in Biomedicine and Healthcare **Date:** June 30, 2024 **Time:** 13:00 – 17:00 **Room:** 418 **Competition:** A Sandbox for Teaching and Learning in QCI for Pre-University and Undergraduate Students **Date:** June 30, 2024 **Time:** 8:30 – 18:20 **Room:** 419 Website: https://sites.google.com/asap.nutn.edu.tw/ieee-wcci-2024/ Competition: Competition on Multi-Objective Black-Box Optimization Benchmarks in Human- Powered Aircraft Design **Date:** July 1, 2024 **Time:** 16:40 – 18:40 **Room:** 213 Website: https://ec-comp.jpnsec.org/competitions/wcci2024 #### Panels Panel: Explainable Artificial Intelligence - Recent Developments and Future Aspirations **Chair(s):** Jonathan Garibaldi Panelist(s): Keeley Crockett, Hussein Abbass, Alexander Gegov, Uzay Kaymak, Joao Sousa **Date:** July 3, 2024 **Time:** 14:20 – 16:20 **Room:** 503 **Explanation:** The purpose of this panel session is to provide an open forum for discussing a wide range of important aspects of Explainable Artificial Intelligence (XAI) such as informativeness, trustworthiness, fairness, transparency, causality, transferability, reliability, accessibility, privacy, safety, verifiability and accountability. Building citizen trust in Artificial Intelligence (AI) products and services requires clear responsibility and accountability pipelines. Human centred explainability is a key aspect of accountability and clear communication of how and why automated decisions are made requires user facing approaches. The panel will discuss explanations from a user perspective and why a mutual language of understanding about AI is important. The topics discussed at the panel will cover technical aspects of XAI that may include local and global scope, specific and agnostic models, as well as aspects of constructive, what-if, counterfactual and example-based explanations. Potential topics within the scope of the panel will include aspects related to real world bias of AI, how this bias is reflected in data bias, the encoding of data bias in algorithmic bias, its uncovering by XAI, and how the latter can then be used for closing the loop by mitigating real world bias. The panel will also explore current challenges and future perspectives in XAI that may include formalisation and evaluation of explanations, their adoption in industry, their potential for improving human machine collaboration as well as their ability to facilitate collective intelligence, responsibility, security and causality in AI. The actual selection of topics covered will be guided by the questions from the audience. Panel: IEEE Standards Developments: Recent Advancements and Hot Topics Chair(s): Bruno DiStefano and Robert Kozma Panelist(s): Edward Au, Plamen Angelov, Autilia Vitiello **Date:** July 1, 2024 **Time:** 16:20 – 18:40 **Room:** 301+302 **Explanation:** The Panel addresses the importance of standards in modern technologies overall, and describes the goals of IEEE Standards Association (SA), in particular. Target audience goes beyond volunteers who are actively involved in standards development at present. We reach out to a wide range of researchers and scientists, academic and industry experts, and describe that involvement in standards can be very beneficial for their professional development, their IEEE membership grades, including Fellows. We also involve young researchers, who are interested in learning about this important technical activity and potentially would get involved in it in the future. The covered topics include: (i) Main features and advantages of standards development by IEEE SA, considering today's diverse field of Standards Development Organizations (SDOs). (ii) The key role of standards in Strategic Planning of IEEE and other organizations aiming at maintaining cutting edge expertise in technologies. (iii) Common threads and specifics in various industrial segments and geographic regions. (iv) Successful Standards Working Groups (SWGs) in CIS SC, such as Fuzzy Markup Language (FML) SWG, eXtensible Event Streams (XES) SWG, Explainable AI (XAI) SWG, and Video Games Vocabulary (VGV) SWG. (v) Present challenges in standards developments and hot topics, including public perception and ethical issues surrounding AGI, ChatGPT, and computational intelligence, in general. Panel: Inside the Editorial Room: Conversations with CIS Editors-in-Chief Chair(s): Kay Chen Tan Panelist(s): Hussein Abbass, Yiu-ming Cheung, Carlos A. Coello Coello, Jonathan Garibaldi, Yongduan Song, Huajin Tang, Chuan-Kang Ting, Dongrui Wu, Georgios N. Yannakakis **Date:** July 2, 2024 **Time:** 8:20 – 10:00 Room: 301+302+303+304 **Explanation:** The purpose of the Editors-in-Chief Panel Session is to create a forum where Editors-in-Chief from CIS Transactions/Magazine can share their insights, experiences, and best practices in academic publishing with the conference attendees. As the academic publishing landscape evolves rapidly, this panel discussion will shed light on the latest trends, challenges, and opportunities in the field. During this panel session, attendees can engage with the Editors-in-Chief as they delve into a range of pertinent topics. The discussion will cover evolving trends in academic publishing and their implications for research dissemination, ethical considerations and best practices for authors, reviewers, and editors; strategies for successful manuscript submission, review, and publication; addressing issues related to peer review, plagiarism, and scientific misconduct, and the importance of collaboration between researchers and journals. Panel: Can AI Craft AI Inspired by the Brain?: Insights from the Fathers Chair(s): Hiroshi Yamakawa Panelist(s): Kunihiko Fukushima, Shunichi Amari, Shiro Takagi **Date:** July 3, 2024 **Time:** 14:20 – 16:20 **Room:** 301+302 **Explanation:** In recent years, neural network research has seen remarkable development of Transformer-based models, including large-scale language models, basic models, and generative AI. However, current technological advances may be approaching their limits, and it remains to be seen whether the realization of advanced AI, such as Artificial General Intelligence (AGI), is possible using only existing methods. This may be partly due to the inability to rapidly expand the readily available data. This panel invites two pioneers in neural network-based AI to explore whether insights from neuroscience can be incorporated into future AI research. The session will begin with a talk by Kunihiko Fukushima. He will discuss lessons learned from AI and its contributions to the technology behind deep learning. Shiro Takagi will then talk about the current state of the art in this field and present the current state and potential of AI research conducted by AI itself. In addition, Shunichi Amari, author of "The New Era of AI," will address a wide range of topics related to evolving AI research in light of the rapid progress of AI. The panel discussion will delve into Al's impact on Al researchers' work and the evolution of Al research methods. Through this discussion, we aim to explore Al's future of Al research and humans' evolving role in this research domain. Ultimately, this panel discussion will provide valuable insights to the participants and catalyze specific action plans and new research directions for the future of Al research. **Panel:** How to Improve and Promote EC Research and EC Conferences Chair(s): Yaochu Jin and Mengjie Zhang Panelist(s): Carlos Coello Coello, Kalyanmoy Deb, Hisao Ishibuchi, Yew Soon Ong, Kay Chen Tan, Bing Xue **Date:** July 2, 2024 **Time:** 14:20 – 16:20 Room: 418 **Explanation:** In recent years, neural network research has seen remarkable development of Transformer-based models, including large-scale language models, basic models, and generative AI. However, current technological advances may be approaching their limits, and it remains to be seen whether the realization of advanced AI, such as Artificial General Intelligence (AGI), is possible using only existing methods. This may be partly due to the inability to rapidly expand the readily available data. This panel invites two pioneers in neural network-based AI to explore whether insights from neuroscience can be incorporated into future AI research. The session will begin with a talk by Kunihiko Fukushima. He will discuss lessons learned from AI and its contributions to the technology behind deep learning. Shiro Takagi will then talk about the current state of the art in this field and present the current state and potential of AI research conducted by AI itself. In addition, Shunichi Amari, author of "The New Era of AI," will address a wide range of topics related to evolving AI research in light of the rapid progress of AI. The panel discussion will delve into Al's impact on Al researchers' work and the evolution of Al research methods. Through this discussion, we aim to explore Al's future of Al research and humans' evolving role in this research domain. Ultimately, this panel discussion will provide valuable insights to the participants and catalyze specific action plans and new research directions for the future of Al research. **Panel:** What will bring AI towards AGI? Chair(s): Hava Siegelmann and Robert Kozma Panelist(s): Hiroshi Yamakawa, Jose Principe, Roy Siegelmann, Alvaro Velasquez, Don Wunch **Date:** July 1, 2024 **Time:** 14:20 – 16:20 **Room:** 301+302 **Explanation:** Artificial General Intelligence (AGI) is the not-yet-achieved goal of highly capable systems which can do far more than static classification, playing computer games or operating robot in sterile environments. The strong definition of AGI is a system that is more intelligent than all humanity together, since it will learn all expertise that any person can have, and as such will be able to solve all problems of the world. The weak definition of AGI includes systems capable of performing a wide array of human-like abilities – such as perhaps walking, speaking, and creating new ideas, rendering them practical to safely perform a variety of tasks including in complex, real-world environments. We will boldly consider the feasibility of both AGI definitions and what steps the community can take to advancing AI to be more general that it is now. Among questions we will ask: - Is the strong AGI possible, or is it a religious fantasy for people who push the belief in God and want to find a substitute through technology? - Does the development of Large Language Models change our way in believing or accepting the future of AGI? - Is the Turing computing enables the existence of AGI? Or does it necessitate the Super-Turing computation? - What inherent changes do we need to do in our research directions within AI to enable it to develop into AGI? What are the serious hurdles? - If AI is that strong, how will our world change? Are these changes desirable? What developments are required to improve the chance of good-to-humanity usage? Panel: Envisioning the Future: Continuing the Legacy of Professor Michio Sugeno Chair(s): Isao Hayashi Panelist(s): Kaoru Hirota, Katsushige Fujimoto, Kazuo Tanaka, Ichiro Kobayashi, Hiroshi Nakajima **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 211+212 **Explanation:** Professor Michio Sugeno (Emeritus, Tokyo Institute of Technology), 83, passed away on August 9th, 2023. He has long been a world authority in the field of fuzzy theory and applications, with countless outstanding achievements ranging from fuzzy measure/Sugeno integral to fuzzy control and everyday language computing. For his achievements, he received the IEEE CIS Fuzzy Systems Pioneer Award in 2000, the IEEE Frank Rosenblatt Award in 2010, and the IEEE Systems, Man, and Cybernetics (SMC) Society's Lotfi A. Zadeh Pioneer Award in 2017 to name a few. His legacy is not only his research achievements but also his attitude and philosophy toward research. This panel welcomes professors closely related to Prof. Sugeno as panelists to discuss the future of the three significant achievements in fuzzy theory that he had developed. Furthermore, this panel also shares his memories and the future that he would have envisioned with the audience. ### **IEEE CIS Student and Early Career Mentoring Program** **Event:** Paper Development Workshop (PDW) **Date:** July 1, 2024 **Time:** 14:20 – 16:20 **Room:** 211+212 **Abstract:** The purpose of the PDW is to provide the mentoring program's participants the opportunity to hear from and engage with the editorial team(s) from the IEEE CIS flagship journals. The focus of the PDW is for potential authors to learn about paper development for publication in top journals and get hands-on feedback on their own papers. At WCCI 2024, the PDW will be run by members (Editors-in-Chief and Associate Editors) of the IEEE Transactions on Evolutionary Computation (TEC) and IEEE Transactions on Fuzzy Systems (TFS), editorial teams, offering both an overview of the journal and its priorities, as well as small-group, hands-on sessions for participants. ## **IEEE CIS Young Professionals** **Event:** Young Professionals Session **Date:** July 4, 2024 **Time:** 8:30 – 10:10 **Room:** 211+212 Website: https://aingames.cn/wcci2024-yp/ #### **Tutorials** #### **IJCNN Tutorials** Tutorial: Dynamic Programming (DP) for AI with DP Perceptions of Back-Propagation **Organizer(s):** Eiji Mizutani **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 311+312 **Abstract:** In this tutorial, we begin with a quick review of various DP principles for AI including A\* search (using cost-so-far and cost-to-go values), dynamic time warping (DTW) for pattern recognition, and temporal-difference reinforcement learning (TDRL) including Q-learning. Then, for neural-network learning, we show an efficient derivation of standard back-propagation (BP) using a nominal state-action Q-value-to-go function in the spirit of DP. We also show how BPTT (back-propagation through time) for recurrent networks will be derived in the same manner as well as for fully-connected cascaded networks. As an application, we describe a constrained Markov decision process (MDP) problem, in which we first show a standard state-augmenting DP approach and then highlight how a recurrent network function approximation can be employed for model-free TDRL with no state augmentation. **Tutorial:** Methods for Learning with Few Data Organizer(s): Marcus Liwicki; Prakash Chandra Chhipa; Richa Upadhyay **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 302 **Abstract:** Deep Neural Networks are data hungry, they require millions of labelled data in order to work! — Really? — The last decade has shown useful approaches to work with less labelled data, either by having a lot of data from a similar domain or by letting the network learn meaningful representations without explicit supervision. This tutorial first brings self-supervised learning to a general perspective of learning with few data, covering typical transfer learning and auto-encoder approaches or perceptual loss. Furthermore, the tutorial will investigate some typical (mis-) conceptions of these methods and suggest some practical tips on how to learn with few data. By participating in this tutorial, you will get deep insights in representation learning and learning with few data, as well as practical tools to start working on data in your own domain. **Tutorial:** Efficient and Secure Foundation Models **Organizer(s):** Minjing Dong; Daochang Liu; Chang Xu **Date:** June 30, 2024 **Time:** 14:10-16:10 **Room:** 303 **Abstract:** With the development of machine learning algorithms, more and more challenging tasks can be well-addressed by foundation models, such as Vision Transformers in computer vision tasks, BERT in natural language processing tasks, diffusion models in generative tasks, etc. These models, while achieving remarkable performance, face challenges related to efficiency and security. This tutorial aims to provide a comprehensive exploration of these foundation models, emphasizing their role in addressing real-world applications, and discussing their potential issues as well as current solutions regarding efficiency and security. Tutorial: From Natural Language Processing to Technical Language Processing Organizer(s): Marcus Liwicki; Karl Löwenmark; Fredrik Sandin **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 303 **Abstract:** Narrow AI systems have achieved super-human performance in Natural Language Processing (NLP) - this is at least, what some big companies state and publish. But in most applications, specifically in industrial context, we cannot observe a major adoption of NLP methods. Domain-specific data, technical terms, and expectations for perfect performance are hindering the wide-spread use of NLP. This tutorial will give a short overview of the recent developments in NLP and introduces into the area of technical language processing. Methods for dealing with technical terms, adapting to specific domains, and integrating log data and sensor values will be presented. Furthermore, this tutorial presents language and it's usage in practice to create context-aware, reasoning large language model applications in industrial contexts and beyond. Tutorial: Instance Space Analysis for Rigorous and Insightful Algorithm Testing Organizer(s): Kate Smith-Miles; Mario Andrés Muñoz **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 316 Abstract: This hands-on tutorial introduces Instance Space Analysis (ISA), a methodology for experimental evaluation of algorithms, by making use of the on-line tools available at the Test Instance Melbourne Algorithm Library with Data Analytics (MATILDA https://matilda.unimelb.edu.au). ISA offers a more nuanced opportunity to gain insights into algorithm strengths and weaknesses for various types of test instances, and to objectively assess the relative power of algorithms, free from any bias introduced by the choice of test instances. An instance space is constructed whereby test instances can be visualised as points in a 2d plane, with algorithm footprints identified as the regions of predicted good performance of an algorithm, based on statistical evidence from empirical testing. From this view of a broad instance space, including the theoretical boundary where additional test instances could exist, we can assess the diversity of a chosen test set, and gain much needed insights into how structural properties of various instances influence the strengths and weaknesses of algorithms. Moreover, through ISA we can identify where additional test instances would be valuable to support greater insights. By setting target points in the instance space, new test instances with controllable properties can be generated to fill the instance space, enabling algorithms to be comprehensively "stress-tested" under all possible conditions. **Tutorial:** Learning from Imbalanced Data Streams Organizer(s): Alberto Cano **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 302 **Abstract:** This tutorial covers the many challenges in learning from data streams with imbalance, including data-level difficulties, concept drift, and the data and algorithm level approaches to address these issues. The tutorial will provide an overview of the state of the art, discuss benchmarks and performance metrics, and will give the participants the code of a framework for evaluating and comparing algorithms for imbalanced data streams. The tutorial can have a duration between 2 and 4 hours. **Tutorial:** A Comprehensive Tutorial on Active Learning: Strategies and Applications Organizer(s): Alaa Othman **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 303 **Abstract:** This tutorial provides a comprehensive exploration of active learning strategies in machine learning and covers key aspects such as active labeling, active class selection, active feature detection and their integration with deep learning. Participants will gain practical insights into optimizing model performance through strategic data annotation, dealing with uncertainty, and effective use of active learning techniques. The tutorial aims to demystify the basics of active learning and make it accessible to both beginners and practitioners. Join us as we dive into the basics and advanced applications of active learning to unlock its potential for improving machine learning models. **Tutorial:** TinyML: An Introduction to Machine Learning on Tiny Devices Organizer(s): Massimo Pavan; Manuel Roveri **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 304 **Abstract:** Long considered an impossible task, the execution of Machine and Deep Learning algorithms on tiny devices is becoming more and more feasible every day. Following the computing-everywhere paradigm, the pervasive diffusion of smart, tiny devices (such as Internet-of-things or edge computing devices), is expected to become pervasive in the next few years. Achieving this goal requires a complete redesign of the standard machine and deep learning solutions that until now have been primarily targeting high level hardware. The tutorial will introduce TinyML models and algorithms, deepening their architectures and the optimizations that enable their execution on tiny devices. A specific focus will be given to the execution of neural networks and deep learning algorithms on tiny devices and approximate computing solutions, such as quantization, pruning and knowledge distillation, will be introduced. This algorithmic deepening will be complemented by a hands-on session, in which the attendees will be introduced to the implementation and porting of TinyML models on tiny devices with a specific focus on the wake-word detection application scenario, a widely used solution in TinyML applications. **Tutorial:** Hypercomplex Neural Networks for Multidimensional Data **Organizer(s):** Danilo Comminiello; Clive Cheong Took; Danilo Mandic **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 313 **Abstract:** Hypercomplex algebras have recently become popular in the field of deep neural networks due to their properties that lead to superior results when dealing with multidimensional data in real-world 3D and 4D paradigms. This tutorial provides a foundational framework that serves as a roadmap for understanding why hypercomplex neural networks are so successful and how their potential can be exploited. Such a theoretical framework is described in terms of inductive bias, i.e., a collection of assumptions, properties, and constraints that are built into training algorithms to guide their learning process toward more efficient and accurate solutions. In the hypercomplex domains, which deal with numbers and data structures beyond the complex numbers, specific inductive biases can be derived to handle the unique properties of such domains as well as the structures of multidimensional data. This novel perspective for hypercomplex deep networks promises to both demystify this class of methods and clarify their powerfulness, under a unifying framework. We show how to develop neural networks in the hypercomplex domain to deal with a wide variety of classic and emerging applications. This may boost the prominence of hypercomplex models as viable alternatives to classical neural networks for multidimensional data. The tutorial is divided in 5 main parts involving both theoretical and practical aspects of hypercomplex deep learning. Danilo P. Mandic will introduce the topic, problems and motivation, and will explain why hypercomplex models are so advantageous for complex problems. Clive Cheong Took will then talk about the fundamental tools required for the hypercomplex domain in terms of calculus, functions, and statistics, and their exploitation in neural networks. The most popular and important models in the hypercomplex domain will be introduced. Danilo Comminiello will provide an in-depth explanation of inductive biases and why hypercomplex neural networks can provide outstanding results for multidimensional data. Then, an extension of these models is presented to generalize the hypercomplex properties regardless of the dimensionality of the signals. All the speakers will then cover some of the possible applications on which we can successfully apply hypercomplex neural networks. Danilo Mandic will close the tutorial providing a view on future possibilities in this field. **Tutorial:** Causal Reinforcement Learning: Empowering Agents with Causality Organizer(s): Zhihong Deng; Jing Jiang; Chengqi Zhang **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 311+312 Abstract: Reinforcement learning has made significant progress in solving sequential decision problems under uncertainty. However, reinforcement learning agents generally lack a fundamental understanding of the world and must therefore learn from scratch through numerous trial-and-error interactions. They may also face challenges in providing explanations for their decisions and generalizing the acquired knowledge. Causality presents a promising approach to address these issues by formalizing knowledge in a systematic manner and leveraging invariance for effective knowledge transfer. This tutorial aims to comprehensively review the emerging field of causal reinforcement learning. We will introduce the basic concepts of causality and reinforcement learning and demonstrate how causality can enhance traditional reinforcement learning algorithms. The tutorial will categorize and systematically review existing causal reinforcement learning approaches based on their target problems and methodologies. We will also outline open issues and future research directions to foster the continuous development and application of causal reinforcement learning in real-world scenarios. We believe that this tutorial will contribute significantly to the machine learning community, offering a unique perspective on integrating causality into reinforcement learning and providing participants with valuable knowledge to explore this emerging field. **Tutorial:** Explainable AI (XAI) for Computer Vision – A Review of Existing Methods and a New Method to Extract a Symbolic Model from a CNN Model **Organizer(s):** Asim Roy **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 304 **Abstract:** Along with the advent of deep learning and its quick adoption, there is concern about using models that we don't really understand. And because of this concern, many critical applications of deep learning are hindered. The concern about transparency and trustworthiness of these models is so high that it is now a major research focus of Artificial Intelligence (AI) programs at funding agencies like DARPA and NSF in the US. If we can make deep learning explainable and transparent, the economic impact of such a technology would be in the trillions of dollars. One of the specific forms of Explainable AI (XAI) envisioned by DARPA includes the recognition of objects based on identification of their parts. For example, the form requires that to predict an object to be a cat, the system must also recognize some of the specific features of a cat, such as the fur, whiskers, and claws. Object prediction contingent on recognition of parts provides additional verification for the object and makes the prediction robust and trustworthy. The first part of this tutorial will review some of the existing methods of XAI in general and then those that are specific to computer vision. The second part of this tutorial will cover a new method that decodes a convolutional neural network (CNN) to recognize parts of objects. The method teaches a second model the composition of objects from parts and the connectivity between the parts. This second model is a symbolic and transparent model. Experimental results will be discussed including those related to object detection in satellite images. Contrary to conventional wisdom, experimental results show that part-based models can substantially improve the accuracy of many CNN models. Experimental results also show part-based models can provide protection from adversarial attacks. Thus, a school bus will not become an ostrich with the tweak of a few pixels. **Tutorial:** Deep Learning for Graphs Organizer(s): Davide Bacciu **Date:** June 30, 2024 **Time:** 16:20-18:20 **Room:** 311+312 **Abstract:** The tutorial will introduce the audience to the area of deep learning on graph data and some of its most compelling research challenges. Current models dealing with graph data almost inevitably leverage a neural message-passing like approach. We will first introduce the foundations of such an approach and discuss its reference literature models. Then we will identify and discuss the limitations of these approaches and the research opportunities that are stemming from this. In this second part, we will cover research topics under development in the community, touching upon generative models, neural graph ODEs, dynamic graphs and algorithmic reasoning. **Tutorial:** Collaborative Learning and Optimization Organizer(s): A. Kai Qin Date: June 30, 2024 Time: 8:30 – 10:30 **Room:** 304 Abstract: Machine learning (ML) and optimization are two essential missions that Computational Intelligence (CI) aims to address. Accordingly, many CI-based ML and optimization techniques have been proposed, where deep neural networks (used for ML) and evolutionary algorithms (used for optimization) are the most well-known representatives. Intrinsically, CI-based ML and optimization are closely related. On the one hand, CI-based ML consists of various model-centric or data-centric optimization tasks. On the other hand, CI-based optimization is often formulated into ML-assisted search problems. In recent years, there emerges a new research frontline in CI, as the proposed title (COLO), which studies how to synergise CI-based ML and optimization techniques while unleashing the unprecedented computing power (e.g., via supercomputers) to generate more powerful ML and optimization techniques for solving challenging problems. This tutorial aims at introducing this newly emerging research direction. Specifically, we will first introduce CI, CI-based ML and optimization techniques, and their relationships, and then describe COLO from three aspects, i.e., how to make use of ML techniques to assist optimization (Learn4Opt), how to leverage optimization techniques to facilitate ML (Opt4Learn), and how to synergise ML and optimization techniques to deal with real-world problems which involve ML and optimization as two indispensable and interwoven tasks (LearnOpt), where the most representative research hotspot in each of these three aspects, i.e., automated construction of deep neural networks, data-driven evolution optimization, and predictive optimization will be discussed in detail. Tutorial: Prospects and Limits of Generative Artificial Intelligence for Medical Systems: Intelligent Healthcare **Organizer(s):** Eros G Pasero **Date:** June 30, 2024 **Time:** 16:20 – 18:20 Room: 314 Abstract: The elderly population's increasing numbers, dwindling healthcare resources, and the perilous doctor-patient contact due to pathologies like COVID-19 signal a need for a shift in the current medical model. Yet, the question remains: what new model to adopt? Artificial Intelligence (AI), the foundation of contemporary life changes, pledges a transformative impact on patient care and the healthcare system. However, the genuine challenge lies in devising a practical model to curb the escalating demand for elderly operations amidst a larger populace with fewer health issues. The potential frontier emerges in Generative Artificial Intelligence, offering fresh data and models for future healthcare systems. These systems facilitate the interpretation of outcomes and the generation of personalized medicine. Leveraging digital twins, models can discern the treatment effects on patients through their digital counterparts. Additionally, AI wearable technology in virtual hospitals enables the remote monitoring of multiple patients within their homes. An overarching query persists: can these systems earn trust in medicine? Questions revolve around the accuracy, precision, sensitivity, ROC curve, and F-score of data produced by generative AI. Addressing these concerns, the latter part of this tutorial will contribute insights, utilizing metrics common in the world of Metrology Tutorial: Conscious Learning vs. Deep Learning Organizer(s): Juyang Weng **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 302 Abstract: Autonomous development needs a general-purpose theory. Experimental studies require such a theory. Consciousness seems not a wishful add-on to AI, but instead a necessary condition toward strong AI. Unfortunately, consciousness has been largely overlooked or deliberately avoided in AI research. This situation resulted in a major weakness in many wellknown neural networks, such as deep learning and ChatGPT. This tutorial will teach basic knowledge about biologically inspired neural networks that enables on-the-fly learning for the three bottleneck problems in AI, Vision, Audition, Natural Languages, plus subjects that have been extremely challenging for neutral networks but are necessary, such as planning and machine thinking. All these subjects are essential for conscious learning. This tutorial will also compare with deep learning, ChatGPT, and evolutional computation that suffer from Post-Selection misconduct. More updated detail of Conscious Learning available is at https://doi.org/10.21203/rs.3.rs-1700782/v2 Tutorial: Neural Network Design and Optimization for 3D Point Cloud Computing Organizer(s): Wei Gao; Ge Li **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 313 **Abstract:** 3D point cloud computing has become very popular in both academia and industry communities, due to its powerful modeling capability for 3D real world with high-precision geometry and attributes. Deep learning-based 3D point clouds can bring better visual experience and machine vision performance, where neural network design and optimization play a critical role for efficient compression, enhancement and analysis of this new type of data. **Tutorial:** Ethical Risks and Challenges of Computational Intelligence Organizer(s): Jim Tørresen; Xin Yao **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 313 Abstract: Artificial intelligence (AI) has entered an increasing number of different domains. A growing number of people – in the general public as well as in research – have started to consider a number of potential ethical challenges and legal issues related to the development and use of AI technologies. There have been related initiatives across the globe, such as the High-Level Expert Group on Artificial Intelligence (AI HLEG) appointed by the European Commission that has a general goal of supporting the implementation of the European Strategy on Artificial Intelligence. This has been followed up with the proposal of the European Artificial Intelligence Act (AIA) and the New Machinery Directive (MD), focusing on developing a framework for trustworthy Artificial Intelligence within Europe, laying down harmonised rules for both AI systems with and without a physical layer (e.g., chatbots vs. robots etc.). This tutorial will give an overview of the most commonly expressed ethical challenges and ways being undertaken to reduce their negative impact using the findings in an earlier undertaken review (https://www.frontiersin.org/articles/10.3389/frobt.2017.00075/full ) and an overview paper of Artificial Intelligence Ethics (https://www.computer.org/csdl/journal/ai/5555/01/09844014/1Fnr097UNd6), supplemented with recent work and initiatives. Among the most important challenges are those related to privacy, fairness, transparency, safety and security. Countermeasures can be taken first at design time, second when a user should decide where and when to apply a system and third when a system is in use in its environment. In the latter case, there will be a need for the system by itself to perform some ethical reasoning if operating in an autonomous mode. This tutorial will introduce some examples from our own and others' work and how the challenges can be addressed both from a technical and human perspective with special attention to problems relevant when working with AI research and development. AI ethical issues should not be seen only as challenges but also as new research opportunities contributing to more sustainable, socially beneficial services and systems. The tutorial is an updated version of the one given in IJCNN 2023: https://2023.ijcnn.org/tutorials **Tutorial:** A Guided Tour of Neural Architecture Search Organizer(s): Szymon Lukasik; Bing Xue **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 311+312 **Abstract:** In the ever-evolving landscape of Artificial Intelligence, Deep Learning has emerged as a dominant force, revolutionizing industries and scientific research. However, the success of neural networks-based methods crucially depends on finding the right network architecture—a task that has proven vital and challenging. The tutorial will aim to provide a comprehensive guide on Neural Architecture Search a category of methods designed to adapt the structures of the network to the problem at hand. We will explore various approaches for NAS, including reinforcement learning-based methods, evolutionary algorithms, and gradient-based optimization techniques. Participants will gain an understanding of the theoretical foundations and practical implications of each approach. Through case studies and practical demonstrations, attendees will also learn about state-of-theart NAS methods. To facilitate hands-on learning, the tutorial will provide code snippets and practical examples that attendees can readily incorporate into their research and projects. These resources will empower participants to apply NAS techniques to their datasets and problems. As a follow-up to the highly successful WCCCI 2022 keynote, this tutorial will be primarily intended for early-career researchers and graduate students who are beginning their journey in Deep Learning. Its role will be to serve as a foundational resource, equipping them with the expertise needed to explore NAS. **Tutorial:** In-Material Physical Computing Organizer(s): Takuya Matsumoto; Tsuyoshi Hasegawa; Hirofumi Tanaka; Ryosho Nakane; Seiya Kasai; Akira Hirose **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 316 **Abstract:** This tutorial will provide an introduction to "computing based on material", which utilizes the inherent structure and properties in materials to perform in-situ environmental recognition such as speech and text. The talks will be given by leading researchers in a wide range of fields, from theoretical background to applications to devices and robotics using inorganic, organic, and nanomaterials. This tutorial contains six talks: 1. Overview – theory and applications, 2. Physical computing based on dynamics in analog electronic devices and circuits, 3. Reservoir computing with spin waves: how to leverage waves in materials, 4. Electrolyte-based physical reservoir computing, 5. Molecular physical computing, 6. Material physical reservoir computing with chemical dynamics. **Tutorial:** Quantum Tensor Networks in Machine Learning and Artificial Intelligence Organizer(s): Jun Qi, Ying-Jer Kao, Samiel Yen-Chi Chen, Mohammadreza Noormandipour **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 313 **Abstract:** Quantum tensor networks, along with their applications in classification, time-series modeling, and natural language processing, signify a burgeoning and interdisciplinary field within the realms of quantum computing and machine learning. This tutorial strives to empower researchers in the fields of machine learning and artificial intelligence by offering insights and tools to explore this cutting-edge domain, presenting accessible entry points and illustrative code samples. #### **CEC Tutorials** **Tutorial:** What You Always Wanted to Know About Evolution Strategies, But Never Dared to Ask Organizer(s): Hans-Georg Beyer **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 411+412 **Abstract:** While Evolution Strategies (ES) are widely known as one of the streams of evolutionary computation and are meanwhile regarded as a competitive alternative to standard learning techniques in Reinforcement Learning, most people associate ES with the covariance matrix evolution strategy. However, there is more than just this particular evolutionary algorithm designed for unconstrained real-valued search spaces. This introductory tutorial provides a broader perspective and view stressing the design philosophy of Evolution Strategies being not restricted to a specific search space, such as unconstrained real-valued optimization, but also includes discrete and combinatorial search spaces. This philosophy can be best understood from the ES history that started from the evolution of material objects - nowadays often referred to as hardware-in-the-loop evolutionary optimization. That is, evolution is done on the "phenotype." Accepting the constraints involved in such optimizations, one naturally can derive design principles for mutation and recombination operators and the control of those operators by self-adaptation - one of the great inventions of ES. Special emphasis is put on a vivid understanding of how the ES explores the search spaces. Recent findings will be presented and supported by live experiments to explain the ES's ability to locate global optima in landscapes with a huge number of local optima. The tutorial will also investigate the reasons why ESs are now regarded as a scalable alternative to Reinforcement Learning. The tutorial will include a live computer experiment demonstrating the relevance of the design and working principles discussed. This tutorial will be on an introductory level requiring only a minimum of maths. **Tutorial:** Towards Better Explainable AI Through Genetic Programming **Organizer(s):** Yi Mei; Qi Chen; Andrew B J Lensen; Bing Xue; Mengjie Zhang **Date:** June 30, 2024 **Time:** 8:30 – 10:30 Room: 413 **Abstract:** Although machine learning has achieved great success in many real-world applications, it is criticised as usually behaving like a black box, and it is often difficult, if not impossible, to understand how the machine learning system makes the decision/prediction. This could lead to serious consequences, such as the accidents of the Tesla automatic driving cars, and biases of the automatic bank loan approval systems. To address this issue, Explainable AI (XAI) is becoming a very hot research topic in the AI field due to its urgent needs in various domains such as finance, security, medical, gaming, legislation, etc. There have been an increasing number of studies on XAI in recent years, which improves the current machine learning systems from different aspects. In evolutionary computation, Genetic Programming (GP) has been successfully used in various machine learning tasks including classification, symbolic regression, clustering, feature construction, and automatic heuristic design. As a symbolic-based evolutionary learning approach, GP has an inherent great potential to contribute to XAI, as a GP model tends to be interpretable. However, the interpretability in GP is not as straightforward as one expect it to be, and the models evolved by GP can still be huge and complex, thus less interpretable. This tutorial will give a brief introduction on how one may achieve better model interpretability in XAI using GP. To this end, we will first briefly introduce XAI and GP. Then we will introduce the GP techniques/strategies that could lead to better model interpretability. We follow the common taxonomy of XAI, and divide the techniques into intrinsic and post-hoc methods. In addition, we will also review some visualisation methods by/for GP to improve interpretability. The tutorial is concluded with some discussions on the current trend, challenges, and potential future research directions. This tutorial will be interested to all researchers who are interested in XAI, GP, and more general evolutionary machine learning and optimisation, as well as practitioners who want to solve their real-world problems with more interpretable solutions. Tutorial: Decomposition Multi-Objective Optimization: Current Developments and Future Opportunities Organizer(s): Ke Li; Qingfu Zhang **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 416+417 **Abstract:** Evolutionary multi-objective optimization (EMO) has been a major research topic in the field of evolutionary computation for three decades. It has been generally accepted that combination of evolutionary algorithms and traditional optimization methods should be a next generation multi-objective optimization solver. As the name suggests, the basic idea of the decomposition-based technique is to transform the original complex problem into simplified subproblem(s) so as to facilitate the optimization. Decomposition methods have been well used and studied in traditional multi-objective optimization. Multi-objective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multi-objective problem into a number of subtasks, and then solves them in a collaborative manner. MOEA/D provides a very natural bridge between multi-objective evolutionary algorithms and traditional decomposition methods. It has been a commonly used evolutionary algorithmic framework in recent years. **Tutorial:** Evolutionary Algorithms and Hyper-Heuristics Organizer(s): Nelishia Pillay **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 411+412 Abstract: Hyper-heuristics is a rapidly developing domain which has proven to be effective at providing generalized solutions to problems and across problem domains. Evolutionary algorithms have played a pivotal role in the advancement of hyper-heuristics and is continuing to do so. The aim of the tutorial is to firstly provide an introduction to evolutionary algorithm hyperheuristics for researchers interested in working in this domain. An overview of hyper-heuristics will be provided including the assessment of hyper-heuristic performance. The tutorial will examine each of the four categories of hyper-heuristics, namely, selection constructive, selection perturbative, generation constructive and generation perturbative, showing how evolutionary algorithms can be used for each type of hyper-heuristic. A case study will be presented for each type of hyper-heuristic to provide researchers with a foundation to start their own research in this area. The EvoHyp library will be used to demonstrate the implementation evolutionary algorithm hyper-heuristic. A theoretical understanding of evolutionary algorithm hyper-heuristics will be provided. A new measure to assess the performance of hyper-heuristic performance will also be presented. Challenges in the implementation of evolutionary algorithm hyper-heuristics will be highlighted. The tutorial will also examine recent trends in evolutionary algorithm hyperheuristics such as transfer learning, hyper-heuristics for continuous optimization and machine learning and hyper-heuristics. The tutorial will end with a discussion session on future directions in the field. **Tutorial:** Evolutionary Feature Reduction for Machine Learning **Organizer(s):** Bach Hoai Nguyen; Bing Xue; Mengjie Zhang **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 414+415 **Abstract:** We are now in the era of big data, where vast amounts of high-dimensional data become ubiquitous in a variety of domains, such as social media, healthcare, and cybersecurity. When machine learning algorithms are applied to such high-dimensional data, they suffer from the curse of dimensionality, where the data becomes very sparse. Furthermore, the high-dimensional data might contain redundant and/or irrelevant features that blur useful information from relevant features. Feature reduction can address the above issues by building a smaller but more informative feature set. Feature selection and feature construction are two main approaches of feature reduction. Feature selection aims to select a small subset of original (relevant) features. Feature construction aims to create a small set of new high-level (informative) features based on the original feature set. Although both approaches are essential data pre-processing steps, they are challenging due to their large search spaces and complex interactions between features. While exhaustive searches are impractical due to their intensive computation cost, traditional heuristic searches require less computational resources but can be trapped at local optima. Recently, evolutionary computation (EC) has been widely applied to achieve feature reduction because of its potential global search ability. Existing EC-based feature reduction approaches successfully reduce the data dimensionality while still improve the classification performance as well as the interpretability of the built models. This tutorial firstly describes a general framework of feature reduction followed by the applications of feature reduction in real-world scenarios. Then, we will show how EC techniques, particularly genetic algorithms, particle swarm optimisation, differential evolution, genetic programming, ant colony optimisation and evolutionary multi-objective optimisation (EMO) can be applied to address challenges in feature reduction. The effectiveness of EC-based feature reduction is illustrated through several applications including bioinformatics, image analysis and pattern classification, symbolic regression, and cybersecurity. The tutorial concludes with existing challenges for future research. **Tutorial:** Evolutionary Bilevel Optimization: Methods and Applications Organizer(s): Ankur Sinha; Hemant K Singh; Kalyanmoy Deb **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 413 **Abstract:** Many practical optimization problems should better be posed as bilevel optimization problems in which there are two levels of optimization tasks. A solution at the upper level is feasible if the corresponding lower level variable vector is optimal for the lower level optimization problem. Consider, for example, an inverted pendulum problem for which the motion of the platform relates to the upper level optimization problem of performing the balancing task in a time-optimal manner. For a given motion of the platform, whether the pendulum can be balanced at all becomes a lower level optimization problem of maximizing stability margin. Such nested optimization problems are commonly found in transportation, engineering design, game playing and business models. They are also known as Stackelberg games in the operations research community. These problems are too complex to be solved using classical optimization methods simply due to the "nestedness" of one optimization task into another. Evolutionary Algorithms (EAs) provide some amenable ways to solve such problems due to their flexibility and ability to handle constrained search spaces efficiently. Clearly, EAs have an edge in solving such difficult yet practically important problems. In the recent past, there has been a surge in research activities towards solving bilevel optimization problems. In this tutorial, we will introduce principles of bilevel optimization for single and multiple objectives, and discuss the difficulties in solving such problems in general. With a brief survey of the existing literature, we will present a few viable evolutionary algorithms for both single and multi-objective EAs for bilevel optimization. Recent studies on bilevel test problems and some application studies will be discussed. Finally, a number of immediate and future research ideas on bilevel optimization will also be highlighted. Tutorial: Fair Performance Comparison of Evolutionary Multi-Objective Algorithms Organizer(s): Lie Meng Pang; Ke Shang; Hisao Ishibuchi **Date:** June 30, 2024 **Time:** 14:10 - 16:10 **Room:** 421 **Abstract:** Evolutionary multi-objective optimization (EMO) has been a very active research area in recent years. Almost every year, new EMO algorithms are proposed. When a new EMO algorithm is proposed, computational experiments are usually conducted in order to compare its performance with existing algorithms. Then, experimental results are summarized and reported as a number of tables together with statistical significance test results. Those results usually show higher performance of the new algorithm than existing algorithms. However, fair comparison of different EMO algorithms is not easy since the evaluated performance of each algorithm usually depends on experimental settings. This is also because solution sets instead of solutions are evaluated. In this tutorial, we will first explain some commonly-used software platforms and experimental settings for the comparison of EMO algorithms. Then, we will discuss how to specify the common setting of computational experiments, which is used by all the compared EMO algorithms. More specifically, the focus of this tutorial is the setting related to the following four issues: (i) termination condition, (ii) population size, (iii) performance indicators, (iv) test problem. For each issue, we will provide a clear demonstration of its strong effects on comparison results of EMO algorithms. Following that, we will discuss how to handle each of these issues for fair comparison. These discussions aim to encourage the future development of the EMO research field without focusing too much on the development of overly-specialized new algorithms in a specific setting. Finally, we will also suggest some promising future research topics related to each issue. Tutorial: New EMO Algorithm Framework with an Unbounded External Archive: Basic Ideas and **Research Directions** Organizer(s): Lie Meng Pang; Ke Shang; Hisao Ishibuchi **Date:** June 30, 2024 **Time:** 16:20 – 18:20 Room: 421 Abstract: In the field of evolutionary multi-objective optimization (EMO), early EMO algorithms in the 1990s are called non-elitist algorithms where no solutions in the current population are included in the next population. That is, the next population is the offspring population of the current population. This non-elitist algorithm framework is clearly inefficient since we cannot preserve good solutions during the execution of EMO algorithms. As a result, almost all EMO algorithms in the last two decades are based on the elitist framework where the next population is selected from the current population and its offspring population. In both frameworks, the final population is presented to the decision maker as the final output from EMO algorithms. Recently, some potential difficulties of the elitist framework have been pointed out. One is that the final population is not always the best subset of all the examined solutions. It was demonstrated in the literature that some solutions in the final population are dominated by other solutions generated and deleted in previous generations. It is also difficult to utilize solutions in previous generations to generate new solutions. Offspring are always generated from solutions in the current population. Another difficulty is that only a limited number of solutions (i.e., only solutions in the final population) are obtained. A new framework with an unbounded external archive can easily handle these difficulties since the final solution set is selected from all the examined solutions. In this framework, we can select an arbitrary number of solutions as the final output from EMO algorithms. Stored solutions in the external archive can be used to create new solutions and also to select solutions for the next population. In this tutorial, some interesting research issues in the new EMO algorithm framework are explained. **Tutorial:** Multi-Objective Machine Learning Organizer(s): Vishnu Naresh Boddeti; Zhichao Lu; Xi Lin; Qingfu Zhang; Kalyanmoy Deb **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 414+415 **Abstract:** Real-world applications of machine learning (ML) often have to contend with objectives beyond predictive performance, i.e., more than one equally important and competing objective or criterion. Examples include cost functions pertaining to invariance (e.g., to photometric or geometric variations), semantic independence (e.g., to age or race for face recognition systems), privacy (e.g., mitigating leakage of sensitive information), algorithmic fairness (e.g., demographic parity), generalization across multiple domains, computational complexity (FLOPs, compactness), to name a few. In such situations, seeking a single solution that optimizes all objectives simultaneously becomes infeasible. Instead, the goal shifts towards finding a set of solutions that adequately describe the trade-off among the objectives. Various strategies have been developed to address these problems, including simple scalarization and population-based methods. This tutorial aims to provide a comprehensive introduction to fundamentals and recent advances in multi-objective optimization (MOO), and its applications to representative machine learning tasks with hands-on coding examples. Some emerging machine learning applications of MOO include (1) multi-task learning as multi-objective optimization; (2) representation learning for privacy and fairness; and (3) neural architecture search. Potential research directions intersecting MOO and machine learning research will be summarized. This tutorial also seeks to convene researchers who are pioneering methods and applications at the crossroads of MOO and machine learning. The goal is to foster a dynamic exchange of ideas, reveal new insights, and explore the untapped potential within this interdisciplinary domain. **Tutorial:** Pareto Optimization for Subset Selection: Theories and Practical Algorithms Organizer(s): Chao Qian Date: June 30, 2024 Time: 8:30 – 10:30 Room: 416+417 **Abstract:** Pareto optimization is a general optimization framework for solving single-objective optimization problems, based on multi-objective evolutionary optimization. The main idea is to transform a single-objective optimization problem into a bi-objective one, then employ a multi-objective evolutionary algorithm to solve it, and finally return the best feasible solution w.r.t. the original single-objective optimization problem from the generated non-dominated solution set. Pareto optimization has been shown a promising method for the subset selection problem, which has applications in diverse areas, including machine learning, data mining, natural language processing, computer vision, information retrieval, etc. The theoretical understanding of Pareto optimization has recently been significantly developed, showing its irreplaceability for subset selection. This tutorial will introduce Pareto optimization from scratch. We will show that it achieves the best-so-far theoretical and practical performances in several applications of subset selection. We will also introduce advanced variants of Pareto optimization for large-scale, noisy and dynamic subset selection. **Tutorial:** Particle Swarm Optimization: A Multi-Purpose Optimization Approach **Organizer(s):** Andries Engelbrecht **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 411+412 **Abstract:** The main objective of this tutorial is to show that particle swarm optimization (PSO) has emerged as a multi-purpose optimization approach. In the context of this tutorial, this means that the PSO can be applied to a wide range of optimization problem types as well as search domain types. The tutorial will start with a very compact overview of the original, basic PSO. The remainder and bulk of the tutorial will cover a classification of different problem types, and will show how PSO can be applied to solve problems of these types. This part of the tutorial will be organized in the following sections, one for each problem type: Continuous-valued versus discrete-valued domains; Unimodal versus multi-modal landscapes; Multi-modal optimization to find multiple solutions; Constrained versus unconstrained problems, also covering boundary constraints; Multi-objective and many-objective optimization; Dynamic environments to include problems where constraints change over time, dynamic multi-objective optimization, tracking multiple optima, and changing problem dimensionality; Large-scale optimization problems. For each problem type, it will be shown why the standard PSO cannot solve these types of problems efficiently without modification. Simple adaptations to the PSO that will allow it to solve each problem type will then be discussed. The focus will be on PSO adaptations that do not violate the foundational principles of PSO. For each of these problem types a small subset of the most successful algorithms will be discussed and links to benchmark problems will be provided. **Tutorial:** Genetic Programming and Machine Learning for Scheduling **Organizer(s):** Fangfang Zhang; Mengjie Zhang; Yi Mei; Su Nguyen **Date:** June 30, 2024 **Time:** 10:40 – 12:40 Room: 413 Abstract: Scheduling is an important optimisation problem that reflects the practical and challenging issues in real-world scheduling applications such as order picking in warehouses, the manufacturing industry and grid/cloud computing. Job shop scheduling (JSS) is a typical scheduling problem, which covers a full range of topics and tasks including static JSS, dynamic JSS, flexible JSS, dynamic flexible JSS, from basic research to a huge number of real-world industrial applications. With recent technological advances in internet-of-things, artificial intelligence, and automation, modern production systems are digitalized and more flexible, and production environments can be monitored and diagnosed in real-time. Scheduling in such dynamic and complex environments is challenging since scheduling needs to be more efficient and reactive, and scheduling decisions have to incorporate dynamic information and uncertainty. Instead of manually designing scheduling heuristics and algorithms for each problem, we can use machine learning and hyper-heuristics to automatically learn effective scheduling heuristics from low-level heuristics, characteristics of scheduling problems, and dynamic information from production environments. Among the techniques studied and applied within the research field of JSS, genetic programming (GP), a powerful evolutionary machine learning technique, has been successfully used to learn scheduling heuristics for JSS, especially for dynamic JSS. This automated design approach can significantly reduce the time required to develop solution methods by domain experts and increase the chance of discovering novel and effective scheduling heuristics. Although GP has shown its advantage in learning scheduling heuristics for JSS, GP still has several limitations for handling JSS such as high computational cost and large search space. In addition, most of existing studies focus mainly on single JSS task optimisation, the multiple tasks solving ability of GP has not been explored. This tutorial will provide a comprehensive introduction to evolutionary machine learning techniques for JSS. This tutorial will cover different types of (advanced) evolutionary machine learning approaches for JSS. From this tutorial, you are expected to get familiar with evolutionary machine learning in four aspects. First, you will learn the definition of hyper-heuristic learning with a comparison of heuristic learning. Second, the details of JSS (e.g., static, dynamic, flexible JSS) will be given. Third, how to use GP as hyper-heuristic approaches to learn heuristics for JSS will be introduced with examples. Last, this tutorial will show how to use advanced machine learning techniques such as feature selection, surrogate and multitask learning with GP to JSS. All the techniques mentioned will be introduced with promising results. **Tutorial:** Evolutionary neural architecture search Organizer(s): Yanan Sun; Bing Xue; Mengjie Zhang; Gary Yen **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 414+415 **Abstract:** Deep Neural Networks (DNNs), as the cornerstone of deep learning, have demonstrated their great success in diverse real-world applications, such as image classification, natural language processing, speech recognition, to name a few. The architectures of DNNs play a crucial role in their performance, which is usually manually designed with rich expertise. However, such a design process is labor-intensive because of the trial-and-error process, and also not easy to realize due to the rare expertise in practice. Neural Architecture Search (NAS) is a kind of technique that could automatically designing promising DNN architectures by formulating the design process as optimization problems. Among existing optimizers for solving NAS, the Evolutionary Computation (EC) methods have demonstrated their powerful ability and have drawn increasing attention. This tutorial will provide a comprehensive introduction to NAS techniques based on EC, i.e., ENAS, for automatically designing the architectures of DNNs. Specifically, this tutorial will cover the ENAS algorithms over 200 papers of most recent ENAS methods in light of the core components, to systematically show their design principles as well as justifications on the design. From this tutorial, the audiences are expected to get familiar with ENAS in four aspects. First, audiences will learn the encoding space categories, different encoding strategies and architecture representations. Second, audiences will learn a variety of EC paradigms use respective metaphors to generate new individuals. Third, audiences will learn the methods to reduce the need for large amounts of time and computing resources, which is a huge obstacle to efficiency. Last, current challenges and issues will be introduced to identify future research in this emerging field. Tutorial: A Deep Dive into Robust Optimization Over Time: Problems, Algorithms, and Beyond Organizer(s): Danial Yazdani; Xin Yao **Date:** June 30, 2024 **Time:** 10:40 – 12:40 Room: 421 **Abstract:** In the evolving landscape of optimization, Dynamic Optimization Problems (DOPs) manifest as a pivotal area of exploration. These problems, characterized by their changing search space over time, present a maze of challenges for optimization algorithms. While much of the existing literature on DOPs primarily focuses on tracking the moving optimum, many real-world DOPs present a different set of challenges and impose a distinct set of requirements. In many practical scenarios, frequent changes to deployed solutions are often undesirable. This aversion stems from various factors, including the high cost associated with switching between deployed solutions, limitations on the resources required to deploy new solutions, and the system's inability to tolerate frequent changes in the deployed solutions. Robust Optimization Over Time (ROOT) emerges as a beacon in such dynamic scenarios, intertwining the principles of robust optimization and dynamic optimization to form a robust framework capable of navigating the turbulent waters of DOPs. ROOT acknowledges the high cost and resource limitations associated with frequent solution deployments, striving for algorithms capable of dealing with the implications of deploying or maintaining solutions over longer time horizons involving multiple environmental changes. In this tutorial, we unravel the intricacies of ROOT, providing a gateway to understand, analyze, and address these problems adeptly. The tutorial is structured to offer a panoramic view of the ROOT realm, covering the underlying problems, innovative algorithms designed to tackle these problems, and benchmarks and performance indicators crucial for evaluating the robustness and effectiveness of these algorithms. Tutorial: Principle and Applications of Semantic Genetic Programming Organizer(s): Qi Chen; Bing Xue; Mengjie Zhang **Date:** June 30, 2024 **Time:** 14:10 – 16:10 Room: 413 Abstract: Semantic genetic programming is a rapidly growing research track of Genetic Programming (GP). Semantic GP incorporates semantic awareness into GP and explicitly uses more information on the behaviour of programs in the search. When evaluating a program, semantic GP characterises it with a vector of outputs instead of a single scalar fitness value. Research has demonstrated the successfulness of additional behavioural information to facilitate the design of a more effective GP search. In addition, the geometric properties of the semantic space lead to more attractive search operators with better theoretical characteristics. With the geometric information of semantics, the GP dynamics are easier to understand and interpret. Inappropriate behaviours are easier to prevent. All these contribute to making GP a more informed and intelligent method. This tutorial will give a comprehensive overview of semantic GP methods. We will review various ways of integrating semantic awareness in the evolutionary process of GP. In particular, we will introduce geometric semantic GP and review its formal geometric semantic framework, and analyse the theoretical properties of the fitness landscape under this framework. This will be followed by a review of many novel developments of provably good semantic genetic operators. Another aspect is the efficient implementation of semantic search operators, which is still challenging. We will illustrate efficient and concise implementations of these operators. Another focus of this tutorial is to stimulate the audience by showing some promising applicative results that have been obtained so far in many applications of semantic GP including many symbolic regression and classification tasks in the areas of healthcare, civil engineering, natural language processing and so on. We will also identify and discuss current challenges and promising future directions in semantic GP with the hope of motivating new and stimulating contributions. **Tutorial:** Benchmarking and analyzing iterative optimization heuristics with IOHProfiler **Organizer(s):** Elena Raponi; Thomas Bäck; Jacob de Nobel; Diederick Vermetten; Anna V Kononova; Niki van Stein; Carola Doerr **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 422 **Abstract:** Comparing and evaluating optimization algorithms is an important part of evolutionary computation and requires a robust benchmarking setup to be done well. IOHProfiler supports researchers in this task by providing an easy-to-use, interactive, and highly customizable environment for benchmarking iterative optimizers. IOHProfiler is designed as a modular benchmarking tool. The experimenter module provides easy access to common problem sets (e.g., COCO/BBOB functions) and modular logging functionality that can be easily combined with other optimization functions. The resulting logs (and logs from other platforms, e.g., COCO and Nevergrad) are fully interoperable with the IOHanalyzer, which provides access to highly interactive performance analysis, in the form of a wide array of visualizations and statistical analyses. A GUI, hosted at https://iohanalyzer.liacs.nl/ makes these analysis tools easy to access. Data from many repositories (e.g., COCO, Nevergrad) are preprocessed, such that the effort required to compare performance to existing algorithms is greatly reduced. This tutorial will introduce the key features of IOHProfiler by providing background information on benchmarking in Evolutionary Computation and showing how this can be done using the modules of IOHProfiler. The key components will be highlighted and demonstrated by the organizers. Guided examples will be provided to highlight the many aspects of algorithm performance, which can be explored using the interactive GUI. Participants will learn how a standardized benchmarking environment can facilitate their experimental setup and data analysis. Following the basic benchmarking setup, we will elucidate how to track adaptive parameters and customize the logging procedure for generating data. Also, we will illustrate how to add new problems to the existing problem sets. We also demonstrate how easy it is to compare your own data to previously recorded ones using IOHProfiler; our data repositories comprise data sets for the BBOB functions of the COCO environment https://github.com/numbbo/coco and from Nevergrad https://facebookresearch.github.io/nevergrad/. **Tutorial:** Tracking the moving optimum in dynamic optimization problems Organizer(s): Michalis Mavrovouniotis; Danial Yazdani **Date:** June 30, 2024 **Time:** 8:30 – 10:30 Room: 421 **Abstract:** In the ever-evolving landscape of real-world problems, the dynamic nature of optimization challenges is increasingly prevalent. This tutorial delves into the exciting field of evolutionary dynamic optimization, focusing on tracking the moving optimum in both discrete and continuous search spaces. It is designed to cater to a wide audience, ranging from those with an interest in evolutionary computation to those seeking the latest advancements in dynamic optimization. **Tutorial:** Evolutionary Diversity Optimization for Combinatorial Optimization Organizer(s): Aneta Neumann; Frank Neumann **Date:** June 30, 2024 **Time:** 10:40 – 12:40 Room: 422 **Abstract:** In the classical setting evolutionary algorithms (EAs) are used to compute a single solution of high quality with respect to the objective function or a set of trade-off solutions in the field multi-objective optimization where one deals with multiple, usually conflicting objectives. Here, diversity preservation is usually introduced as a means to prevent premature convergence. In many engineering applications and in the field of algorithm selection/configuration however, it is beneficial to produce a set of solutions that is (1) of high quality and (2) diverse with respect to the search space and/or some features of the given problem. Evolutionary Diversity Optimization enables the computation of a large variety of new and innovative solutions that are unlikely to be produced by traditional evolutionary computation methods for single-objective or multi-objective optimization. Related to evolutionary diversity optimization is the concept of novelty search. Here EAs are used to discover new designs/solutions without focusing on explicit objectives as a driver for the search process. The goal of novelty search is to explore solutions that are different to the ones previously obtained. In this tutorial, we will give a detailed overview on evolutionary diversity optimization which is a new important research area within evolutionary computation that aims to provide sets of diverse solutions. Apart from that, we give a brief introduction into novelty search, highlight similarities and differences to evolutionary diversity optimization and give an outlook how both fields can benefit from each other. Tutorial: Designing Metaheuristics with Large Language Models: Challenges and Opportunities Organizer(s): Michal Pluhacek; Adam Viktorin; Roman Senkerik **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 414+415 **Abstract:** This tutorial will explore the possibilities of utilizing Large Language Models (LLMs) like GPT-4 for designing metaheuristic algorithms tailored to specific optimization problems. The central theme of the talk revolves around a systematic approach to leveraging LLMs' capabilities in this innovative context. # Workflow and Analysis Process: Proposing New Algorithms: We will start by prompting the model to propose new metaheuristic algorithms for predefined optimization problems. This will involve inputting detailed problem specifications into the LLM and analyzing the metaheuristic solutions it generates. Logical and Correctness Evaluation: Each of the proposed algorithms will be meticulously analyzed for their logical structure and correctness. This stage is crucial in assessing whether the solutions provided by LLMs are not only innovative but also logically sound and applicable to the problem at hand. Viability Assessment: The focus will then shift to evaluating the viability of these proposed algorithms. We will discuss and criticise the practicality of implementing the model output, considering factors such as computational efficiency, scalability, and adaptability to real-world scenarios. Potential for Novel and Powerful Metaheuristics: A key aspect of the talk will be to determine if LLM's involvement can lead to the development of novel and more powerful metaheuristic algorithms. We will explore whether the LLM contributions can transcend conventional approaches, offering new perspectives and solutions in the field of metaheuristics. ### Conclusion and Future Outlook: The session will conclude with reflections on the broader implications of integrating LLMs like GPT-4 in metaheuristic development. We'll discuss the potential future directions this research could take and how it might shape the evolution of algorithmic problem-solving in various domains. **Tutorial:** Embedding Knowledge into Optimization Process Organizer(s): Amir H Gandomi **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 416+417 **Abstract:** Real-world optimization problems are usually large-scale and involve several constraints and sometimes even finding a single feasible/acceptable solution is a challenging task. To solve these complex real-world problems, heuristics and concept-based approaches can be very helpful and narrow down the search space. Here, I am going to talk about four approaches used in order to incorporate information into the problem and the optimization process, listed below: - Variable functioning: In this method, the relationships among one or more subsets of variables are defined with functions using information prior to optimization; thus, instead of modifying the variables in the search process, the function variables are optimized. - Semi-Independent Variable: the concept of a semi-independent variable (SIV) problem representation is investigated that embodies a set of expected or desired relationships among the original variables, with the goal of increasing search effectiveness and efficiency. - Boundary update: This study introduces a new approach for implicitly handling constraints. The proposed approach reduces the consideration of infeasible solutions by directly updating variable bounds with constraints, which is called the boundary update (BU) method. - Variable grouping and co-evolution: In this approach, cooperative coevolution is presented and introduced to efficiently solve optimization problems. These four approaches are coupled with several evolutionary optimization algorithms and the results show that they are practical and effective approaches, and lead to better solutions with fewer function evaluations in most cases. This tutorial should motivate optimization researchers and practitioners to pay more attention to embedding different sources of knowledge into the optimization process to boost it. **Tutorial:** Landscape Analysis for Explainable Optimization Organizer(s): Arnaud Liefooghe; Sébastien Verel **Date:** June 30, 2024 **Time:** 14:10 – 16:10 Room: 422 **Abstract:** The aim of optimization algorithm designers is to choose the right algorithm and its proper configuration to solve the problem they face. It is, however, even more important to understand and to be able to explain why this choice is relevant. There is in fact a multitude of algorithms among which it is often difficult to determine which one to use for solving a particular optimization problem — or even a particular problem instance. Indeed, many evolutionary and related search-based optimization algorithms have been proposed for solving a wide range of problems, ranging from single- to multi-objective or continuous to combinatorial optimization. Nevertheless, despite their efficiency and skillful design, it is not always clear in which context an algorithm works best. It is therefore essential to gain a fundamental understanding of their strength and weakness in view of the problem they are aiming to solve. In addition, the informed design and automated selection or configuration of an efficient optimization algorithm is also a challenge that attracts increasing attention from the research community. Landscape analysis is a well-established field that aims to understand the relationship between the underlying structure of a given problem search space and algorithms as well as their underlying components and parameters. Starting by introducing state-of-the-art tools for single-objective landscapes, we identify the key differences and additional properties to address multi-objective landscapes. We expose and contrast the impact of landscape characteristics on the performance of single- and multi-objective optimization algorithms. We identify a sound and concise summary of features characterizing the landscape of a problem instance. We also review the fundamental principles for designing new relevant features, and we show the main methodologies for sampling combinatorial and continuous search spaces. By providing effective tools and practical examples from landscape analysis, further insights are provided on the importance of ruggedness, multimodality and objective correlation in predicting algorithm performance for unseens problems. We conclude with guidelines for the design of search-based optimization by means of key landscape features, and we identify a number of open challenges for the future of landscape analysis and (evolutionary) optimization algorithms. **Tutorial:** Adversarial Optimisation through Competitive co-Evolutionary Algorithms Organizer(s): Per Kristian Lehre; Mario A Hevia Fajardo **Date:** June 30, 2024 **Time:** 8:30 – 10:30 Room: 422 Abstract: Classical evolutionary algorithms require a fitness function to compare the quality of candidate solutions. However, the quality of candidate solutions in real-world optimization is often a function of adversarial and unforeseen factors which are difficult to model explicitly. In fact, finding hard or worst-case scenarios to evaluate a given solution is itself a difficult optimization problem. Thus, solutions obtained by EAs using a fixed fitness function may perform poorly when deployed in a competitive, real-world scenario. Co-evolutionary algorithms -- which model evolutionary arms-races between populations of predators and prey -- do not rely on explicit fitness functions. They represent one of the most exciting ideas in evolutionary computation, with successful applications ranging from designing sorting networks, playing backgammon, and patching software bugs. Related approaches from the broader AI field, including self-play in reinforcement learning and generative adversarial networks (GANs), highlight the importance of co-evolution. This tutorial has been designed for those who want an introduction to competitive co-evolution, covering their design, analysis, and applications. It assumes no specific background in evolutionary computation, game theory, or analysis of randomized algorithms. We will begin by giving examples of practical adversarial optimization scenarios where co-evolutionary algorithms are applicable. Then we explain how such problems can be captured within a game-theoretic framework with appropriate solution concepts. This part allows participants to recognize problem types where co-evolution can be used. We will then proceed to give an overview of the design of co-evolutionary algorithms, including essential components such as evaluation and archiving methods. This part also covers so-called coevolutionary pathologies and how they can be remedied. After attending this part, participants will be able to design and implement existing and new co-evolutionary algorithms. Finally, we will discuss theoretical analyses of co-evolutionary algorithms, including No Free Lunch theorems and runtime analysis. This part will give participants a deeper and theoretically founded understanding of how and why co-evolutionary algorithms work, and why they sometimes fail. Several interactive activities are planned, including visualization of algorithms using our own software. This will give the audience a practical and hands-on experience in how co-evolutionary population dynamics are influenced by characteristics of the game and the design of the algorithm. Based on our previously held tutorials in conferences such as CEC, GECCO, and PPSN, we expect an audience of approximately 50 people. **Tutorial:** Evolutionary Multi-task Optimization Organizer(s): Liang Feng; Abhishek Gupta; A. Kai Qin **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 411+412 Abstract: Evolutionary algorithms (EAs) typically start the search from scratch by assuming no prior knowledge about the task being solved, and their capabilities usually do not improve upon past problem-solving experiences. In contrast, humans routinely make use of the knowledge learnt and accumulated from the past to facilitate dealing with a new task, which provides an effective way to solve problems in practice as real-world problems seldom exist in isolation. Similarly, practical artificial systems like optimizers will often handle a large number of problems in their lifetime, many of which may share certain domain-specific similarities. This motivates the design of advanced optimizers which can leverage on what has been solved before to facilitate solving new tasks. In this tutorial, we will present recent advances in the field of evolutionary computation under the theme of evolutionary transfer and multi-task optimization via automatic knowledge transfer. Particularly, we will describe a general definition of transfer optimization, encompassing the sequential transfer and multitasking paradigms. We will also introduce recent theoretical developments in transfer optimization and describe corresponding evolutionary methodologies that can be put into use in practice. Some potential applications of evolutionary transfer and multi-task optimization in real-world scenarios will also be discussed. Tutorial: Differential Evolution with Ensembles, Adaptations and Topologies Organizer(s): Ponnuthurai Nagaratnam Suganthan **Date:** June 30, 2024 **Time:** 16:20 – 18:20 **Room:** 411+412 Abstract: Differential Evolution (DE) is one of the most powerful stochastic real-parameter optimization algorithms of current interest. DE operates through similar computational steps as employed by a standard Evolutionary Algorithm (EA). However, unlike traditional EAs, the DEvariants perturb the current-generation population members with the scaled differences of distinct population members. Therefore, no separate probability distribution has to be used for generating the offspring. Since its inception in 1995, DE has drawn the attention of many researchers all over the world resulting in a lot of variants of the basic algorithm with improved performance. This tutorial will begin with a brief overview of the basic concepts related to numerical optimization and DE, DE's algorithmic components and control parameters. It will subsequently discuss some of the significant algorithmic variants of DE for bound constrained single-objective optimization. Recent modifications of the DE family of algorithms for constrained, multi-objective and niching problems will also be included. The talk will discuss the effects of incorporating ensemble learning in DE – a relatively recent concept that can be applied to swarm & evolutionary algorithms to solve various kinds of optimization problems. The talk will also discuss neighborhood topologies based DE and adaptive DEs to improve the performance of DE. The talk will finally highlight a few problems that pose challenge to the state-of-the-art DE algorithms and demand strong research effort from the DE-community in the future. #### **FUZZ-IEEE Tutorials** **Tutorial:** A primer on challenges in Ethical AI – from practice to teaching **Organizer(s):** Keeley Crockett; Tayo Obafemi-Ajayi; Christian Wagner **Date:** June 30, 2024 **Time:** 14:10 – 16:10 **Room:** 211+212 Abstract: The aim of this tutorial is to briefly introduce and discuss a range of ethical issues that need to be considered by data scientists, software development teams, industry and academia professionals either when applying AI, conducting AI research, or developing teaching materials and research funding applications. We will highlight practical approaches such as consequence scanning to evaluate the ethical impact of AI research ideas/new products and services on individuals and society. There is no specific prerequisite knowledge required. It will be an interactive session where participants are expected to bring their own laptops with internet connection. Tools such as padlet and mentimeter will be used to help facilitate group discussions. Participants will be equipped with skills and tools to empower them to carry out their research and teaching within the scope of Ethical AI. Tutorial: Interpretable Fuzzy Networks for Explainable Artificial Intelligence Organizer(s): Alexander Gegov; Farzad Arabikhan **Date:** June 30, 2024 **Time:** 8:30 – 10:30 **Room:** 211+212 Abstract: This is a 2-hour tutorial that includes two 45-minute parts. Each part will be followed by a 15-minute discussion session with questions and comments from the audience. The tutorial focuses on the inherent interpretability of fuzzy networks which makes them a suitable tool for building explainable artificial intelligence models. These models facilitate the identification of causal relationships between inputs and outputs by intermediate variables. The tutorial highlights some recent research results of the presenters that have been published in several specialised journals such as 'IEEE Transactions on Fuzzy Systems', 'Fuzzy Sets and Systems', 'Intelligent and Fuzzy Systems', 'Computational Intelligence Systems', 'Uncertainty, Fuzziness and Knowledge Based Systems' as well as in the Springer Book Series 'Studies in Fuzziness and Soft Computing'. The tutorial is expected to be attended mainly by participants from the Fuzzy Systems strand of the congress but participants from the other two strands may also be interested to attend. In view of the current high popularity of Explainable Artificial Intelligence and the exponential growth in the number of recent publications in this area, the tutorial is expected to be well attended by a large number of congress participants. Tutorial: Using Fuzzy Sets and Systems for Explainable Artificial Intelligence – How and Why? Organizer(s): Jose M Alonso; Direnc Pekaslan; Christian Wagner **Date:** June 30, 2024 **Time:** 10:40 – 12:40 **Room:** 211+212 Abstract: All is pervading many aspects of our Society. This poses challenges to avoid people being put aside when their own data are processed by All systems, which provide decisions that may result in harmful discrimination. Our focus is on knowledge representation and how to enhance human-centered information processing in the context of Explainable Artificial Intelligence (XAI in short). XAI is an endeavor to evolve All methodologies and technology by focusing on the development of intelligent agents capable of both generating decisions that a human can understand, and explicitly explaining such decisions. This way, it is possible to scrutinize the underlying intelligent models and verify if automated decisions are made based on accepted rules and principles, so that decisions can be trusted, and their impact justified. Accordingly, intelligent systems are expected to naturally interact with humans, thus providing comprehensible explanations of decisions automatically made. Accordingly, there are three main open research problems: (1) designing explainable algorithms; (2) implementing explainable human-machine interfaces; and (3) evaluating the goodness of explanations. Even if this tutorial will briefly introduce the main concepts and methods in the context of XAI in general, the focus will be on how to deal (and compute) properly with words and perceptions in both generation and evaluation of explanations. More precisely, we will consider the explainable design of Fuzzy Sets and Systems for paving the way from interpretable machine learning to XAI. Such systems deal naturally with uncertainty and approximate reasoning (as humans do) through computing with words and perceptions. This way, they facilitate humans to scrutinize the underlying intelligent models. This tutorial is of interest for researchers, practitioners, and students (PhD, MSc, BSc, or undergraduate students) working in the field of XAI; with special emphasis on fuzzy-grounded knowledge representation and reasoning. **Tutorial:** A leap forward in overcoming the drawbacks of fuzzy set theory Organizer(s): Gustavo Rivas-Gervilla **Date:** June 30, 2024 **Time:** 8:30 – 10:30 Room: 213 Abstract: Adapting crisp systems and their crisp foundations (algorithms, concepts and theories) to the fuzzy case is both a necessity and a challenge. A necessity because "fuzziness" is at the core of human reasoning and communication abilities, and we are in the era of systems that intend to manage information provided by humans, communicate with humans using concepts and natural language, and emulate human reasoning. A challenge because, though a plethora of resources have been provided over fifty-five years of research in fuzzy set theory and their extensions, we still have to renounce to properties of crisp systems when moving to the fuzzy side. Paradigmatic examples are the unability of fuzzy set theories to keep all the Boolean properties of set operations simultaneously, and the unability of fuzzy numbers to keep the algebraic structure of crisp numbers. In this tutorial we talk about new theories for representing graduality for a swift, simple and property-lossless move to the fuzzy side. **Tutorial:** Efficient Optimization of TSK Fuzzy Systems Organizer(s): D. Wu Date: June 30, 2024 Time: 10:40 – 12:40 **Room:** 213 **Abstract:** TSK fuzzy systems have been widely used in classification and regression. However, for big data, traditional evolutionary algorithm based and full-batch gradient descent based optimization strategies become too costly. This tutorial first introduces functional similarity/equivalence between TSK fuzzy systems and classical machine learning models such as radial basis function network, mixture of experts. Then, it extends their optimization techniques, such as mini-batch gradient descent, DropOut, Batch normalization and Adam, to the optimization of TSK fuzzy systems. ### Technical Content June 30, 2024 18:30 - 20:30 **WCCI Welcome Reception** **Room:** 301-304 19:00 - 20:40 Virtual: Algorithms 1 Conference: CEC Room: Zoom 24 Session Chair(s): 19:00 Using selected heuristic algorithms in solving nonlinear differential equations Mariusz Pleszczyński (Silesian University of Technology, Poland) **19:20** Automated Synthesis of Commutative Approximate Arithmetic Operators Zdenek Vasicek (Brno University of Technology, Czech Republic) 19:40 Prediction of Managed Forest Growth Based on Machine Learning and Cellular Automata Pablo H. Freitas and Murillo G. Carneiro (Federal University of Uberlândia, Brazil); Thiago P. Protasio (Federal Rural University of Amazonia, Brazil); Delman A. Gonçalves (Brazilian Agricultural Research Corporation, Brazil); Rodrigo O. V. Miranda and Alvaro A. V. Soares (Federal University of Uberlandia, Brazil); Luiz Gustavo A. Martins (Federal University of Uberlândia, Brazil) **20:00** Using Island Model in Asynchronous Evolutionary Strategy to Search for Backdoors for SAT Artem Pavlenko and Alexander Semenov (ITMO University, Russia) #### 20:20 Estimation of glycated hemoglobin by symbolic regression Esther Maqueda (Hospital Universitario de Toledo, Spain); J. Ignacio Hidalgo and J. Manuel Velasco (Universidad Complutense de Madrid, Spain); Oscar Garnica (Complutense U. of Madrid, Spain) 21:00 - 22:40 Virtual: Algorithms 2 Conference: CEC Room: Zoom 24 Session Chair(s): Sara Pérez Carabaza **21:00** Ant Colony Based Dynamic Voronoi Method for the Multi-Depot Multiple TSP Sara Pérez Carabaza and Akemi Gálvez (University of Cantabria, Spain); Andres Iglesias (University of Cantabria, Spain & Toho University, Japan) # 21:20 Dynamic Multi-Objective Optimization Time Series Ensemble Prediction Framework Based on Correlation Type Detection Lele Xie, Xiaoming Zhang, Ran Hu and Shun Zhang (Anhui University, China) ### 21:40 Enhanced Multi-Scale Quantum Harmonic Oscillator Algorithm with Opposition-based Learning Xinggui Ye (University of Electronic Science and Technology of China, China); Jian Li (UESTC Chngedu, China); Peng Wang (Southwest Minzu University, China) # **22:00** Improving Inference of Biochemical Composition in Marine Biomass via Genetic Algorithm-based Feature Selection on Raman Spectroscopic Data Kaan Demir and Bach Hoai Nguyen (Victoria University of Wellington, New Zealand); Jeremy S. Rooney (University of Otago, New Zealand); Bing Xue (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand); Kirill Lagutin and Andrew MacKenzie (Callaghan Innovation, New Zealand); Keith C. Gordon (University of Otago, New Zealand); Daniel P. Killeen (The New Zealand Institute for Plant and Food Research Limited, New Zealand) # **22:20** Ingredient Planning for Copper Industry: A Deep Reinforcement Learning-Based ε-Constrained Multi-Objective Optimization Framework Xuerui Zhang (Dalian University of Technology, China); Zhongyang Han (School of Control Science and Engineering, Dalian University of Technology, China); Zhiyuan Wang, J. Zhao and W. Wang (Dalian University of Technology, China) #### July 1, 2024 8:20 - 9:40 CEC MO1-R10: Multi-modal Optimization Conference: CEC Room: 414+415 **Session Chair(s):** Lisa Schönenberger ### **8:20** Evolutionary Multi-modal Optimization Using Persistence-Based Clustering in Riemannian Manifolds Xiang Meng and Yan Pei (University of Aizu, Japan); Hideyuki Takagi (Emeritus of Kyushu University, Japan) **8:40** Enabling Dual Subpopulations and Clustering for Multimodal Multiobjective Optimization Yu-Cheng Su, Yi-Ruei Chen and Chuan-Kang Ting (National Tsing Hua University, Taiwan) **9:00 Novel Genotypic Diversity Metrics for Real-coded Optimization on Multi-modal Problems** Alexandre Mascarenhas, Yuta Kobayashi and Claus Aranha (University of Tsukuba, Japan) **9:20 Success** Rate of Evolution Strategies on the Multimodal Griewank Function Lisa Schönenberger and Hans-Georg Beyer (Vorarlberg University of Applied Sciences, Austria) 8:20 - 9:40 CEC MO1-R11: SS on AI for Climate Science Conference: CEC Room: 416 + 417 **Session Chair(s):** Kehinde A. Owoeye #### 8:20 Forecasting Soil Moisture Using PSO-CNN-LSTM Model Zhou Guoyuan and GuoLiang Li (Huazhong Agricultural University, China) # **8:40** Harnessing Machine Learning for Reliable Weather Forecasting: Meteorological Impact on Sustainable Energy in Monterrey Gustavo de Jesus Machado-Guillen, Jorge Mario Cruz-Duarte and Santiago Enrique Conant-Pablos (Tecnologico de Monterrey, Mexico); Katarzyna Filus (Polish Academy of Sciences, Poland) # 9:00 Graph Neural Network with Quasi-Data Augmentation for Modelling Food Web Relationships Kehinde A. Owoeye, Dr. (National Engineering Laboratory) #### 9:20 Lightweight Neural Ensemble Approach for Arctic Sea Ice Forecasting Julia Borisova and Nikolay Nikitin (ITMO University, Russia) 8:20 - 9:40 **CEC MO1-R12:** Evolutionary Computation for Healthcare Conference: CEC Room: 418 **Session Chair(s):** Qi Chen ### 8:20 A Stacking Ensemble Machine Learning Strategy for COVID-19 Seroprevalence Estimations in the USA bas Gontzal Sagastabeitia and Josu Doncel (University of the Basque Country, Spain); Antonio Fernández Anta (IMDEA Networks Institute, Spain); Jose Aguilar (Universidad de Los Andes, Venezuela & IMDEA Network Institute, Spain); Juan Marcos Ramirez (IMDEA Networks, Spain) **8:40** Genetic programming with multi-task feature selection for Alzheimer's disease diagnosis Shanshan Tang (Northeastern University & Victoria University of Wellington, China); Qi Chen and Bing Xue (Victoria University of Wellington, New Zealand); Min Huang (Northeastern University, China); Mengjie Zhang (VUW, New Zealand) # **9:00** Multi-Objective Evolutionary Optimization for Tuning Hyperparameters and Reducing Features in Prediction of Deep Vein Thrombosis Ruslan Sorano (Østfold University College, Norway); Kazi Shah Nawaz Ripon (Oslo Metropolitan University, Norway); Lars Vidar Magnusson (Ostfold University College, Norway) # **9:20** Comparing Surrogate-Assisted Evolutionary Algorithms on Optimization of a Simulation Model for Resource Planning Task for Hospitals Jakub Kudela and Ladislav Dobrovsky (Brno University of Technology, Czech Republic); Mhd Ali Shehadeh (Bno University of Technology, Czech Republic); Tomas Hulka and Radomil Matousek (Brno University of Technology, Czech Republic) 8:20 - 9:40 **CEC MO1-R13:** Evolutionary Multi-objective Algorithms I Conference: CEC Room: 419 **Session Chair(s):** Lie Meng Pang **8:20 Multi-Objective Evolutionary Optimization for Large-Scale Open Pit Mine Scheduling** Ishara Hewa Pathiranage and Aneta Neumann (The University of Adelaide, Australia) **8:40** Analysis of Algorithm Comparison Results on Real-World Multi-Objective Problems Lie Meng Pang, Hisao Ishibuchi and Ke Shang (Southern University of Science and Technology, China) # 9:00 Design of Generalized and Specialized Helper Objectives for Multi-objective Continuous Optimization Problems Keigo Mochizuki, Tomoki Ishizuka, Naoya Yatsu, Hiroyuki Sato and Keiki Takadama (The University of Electro-Communications, Japan) 9:20 Multi-Agent Reinforcement Learning with Asymmetric Representation Assisted by Multi-Objective Evolutionary Algorithms Ye Tian, Weixin Wang, Shangshang Yang, Panpan Zhang and Xingyi Zhang (Anhui University, China) 9:40 - 18:40 Exhibition **Room:** 501+502 9:40 - 9:55 **Break** 9:55 - 10:30 **Opening Ceremony** Room: 301+302+303+304 10:30 - 11:30 WCCI 2024 Plenary Talk by Simon See Room: 301+302+303+304 Session Chair(s): Akira Hirose #### Accelerating Science Discovery - High Performance Simulation, Math and Al Simon See Nvidia Modern scientific discovery relies on advances in data science, mathematics, and artificial intelligence (AI). The combination of these disciplines has led to significant breakthroughs in various fields, including materials science, drug discovery, and chip design. This talk discusses the role of AI-enriched simulation in accelerating science discovery and the use of high-performance computing, math, and AI to drive innovation. Key aspects of AI-enriched simulation include: Accelerating the discovery process: Al-enriched simulation uses Al to identify the most promising simulations to run on a massive dataset, reducing the computational expense and saving precious time and resources. Automating complex simulations: Al-enriched simulation makes complex, predictive simulations automatable and user-friendly for researchers without deep computational expertise, removing a critical research bottleneck Reducing the number of simulations needed: By using AI to analyze data and determine the most promising simulations, AI-enriched simulation can speed up screening by factors of 10-100 times. Leveraging AI and machine learning: AI-assisted simulations use neural networks and machine learning algorithms to predict complex properties of materials and other systems, bypassing expensive physics-based routines and accelerating the discovery process. Collaborative research: Al expertise, such as that found at Berkeley Lab, can be combined with traditional research methods to apply Al to various scientific problems, leading to innovative solutions and new discoveries. In summary, the future of scientific discovery lies in the integration of high-performance simulation, math, and AI. By harnessing the power of these technologies, researchers can accelerate the discovery process, automate complex simulations, and unlock new possibilities in various fields. 11:30 – 13:00 Lunch Time **Keynote talk by Plamen Angelov** Conference: IJCNN Room: 301+302 **Session Chair(s):** Robert Kozma ### Learning from Data in post-Foundation Models Era: bringing learning and reasoning together Plamen Angelov Lancaster University, UK Deep Learning continues to attract the attention and interest not only of the wider scientific community and industry, but also society and policy makers. Fuelled by the remarkable generalisation and separability capabilities offered by the transformers (e.g. ViT), Foundation Models (FM) offer unparalleled feature extraction opportunities. However, the mainstream approach of end-to-end iterative training of a hyper-parametric, cumbersome, and opaque model architecture led some authors to brand them "black box". This degrades their generalisation, requires many labelled data, compute power and related energy, etc. costs. Cases were reported when such models can give wrong predictions with high confidence - something that jeopardises the safety and trust. Deep Learning is focused on accuracy and overlooks explainability and the semantic meaning of the internal model representations, reasoning and its link with the problem domain. In fact, it shortcuts from the large amount of (labelled) data to the predictions bypassing and substituting the causality with correlation and error minimisation. It relies on assumptions about the data distributions that are often not satisfied and suffers from catastrophic forgetting when faced with continual and open set learning. Once trained, such models are inflexible to new knowledge. They are good only for what they were originally trained for. Indeed, the ability to detect unseen and unexpected and start learning this new class/es in real time with no or very little supervision (zero- or few- shot learning) is critically important but is still an open problem. The challenge is to fill the gap between the high levels of accuracy and the semantically meaningful solutions. This talk will focus on "getting the best from both worlds": the powerful latent feature spaces formed by pre-trained deep architectures such as transformers combined with the interpretable-by-design (in linguistic, visual, semantic, and similarity-based form) models. One can see this as a fully interpretable frontend and a powerful backend working in harmony. Examples will be demonstrated from the latest projects from the area of autonomous driving, Earth Observation, health and a set of well-known benchmarks. **Keynote talk by Yew Soon Ong** Conference: CEC Room: 303+304 **Session Chair(s):** Oscar Cordon # Multifactorial Evolutionary Computation with Applications in Machine Learning and Scientific Discovery Yew Soon Ong Nanyang Technological University The human mind demonstrates an exceptional capacity to manage multiple tasks seemingly simultaneously while also exhibiting the ability to leverage knowledge acquired from solving one task and apply it to different yet related challenges. Given the exploding volume and variety of information streams, the opportunity, tendency, and (even) the need to address different tasks in quick succession is unprecedented. Yet, the design of population-based algorithms of evolutionary computation (EC) has traditionally focused on addressing a singular task (or problem) at a time. It is only recently that the idea of multifactorial evolution has come to the fore, leading to the growing popularity of transfer and multitask EC. The nomenclature signifies a search involving multiple optimization tasks, with each task contributing a unique factor influencing the evolution of a population of candidate solutions. The multifactorial evolutionary algorithm (MFEA) is distinguished by implicit genetic transfers between tasks, promising free lunches in optimization by reusing knowledge from related problems. The method makes possible the rapid discovery of diverse, high quality outcomes, and potentially out-of-the-box solutions through inter-task genetic crossovers. In this talk, some of the latest algorithmic advances of MFEAs shall be presented, encompassing both single-objective and multiobjective variants. The impact potential of algorithms designed to leverage multiple related tasks shall be showcased in the field of machine learning (through the creation of diverse sets of small but specialized models extracted from large pre-trained architectures) and in AI for scientific discovery (by facilitating fast simulations of multiple instantiations of the fundamental laws of nature). Multiobjective multitasking as a means to arrive at sets of Pareto optimal solution sets in other application domains shall also be highlighted. **IEEE CIS Fuzzy Systems Pioneer Award Keynote Talk by Qiang Shen** **Conference:** FUZZ-IEEE **Room:** 503 **Session Chair(s):** Christian Wagner # When There Is Little Data Can AI Still Work? – Approximate Reasoning with Knowledge Interpolation and its Applications Qiang Shen Aberystwyth University Al is on the brink of revolutionising industries globally, having made significant advancements in recent years. These achievements are primarily attributed to the use of deep learning techniques that process vast amounts of data. Yet, a pivotal question emerges when faced with limited data for a new problem, especially if this data is ambiguously characterised. Can Al maintain its efficacy under these constraints? This presentation delves into contributions addressing this query, highlighting how fuzzy rule interpolation (FRI) enables approximate reasoning in situations marked by sparse or incomplete knowledge. This is particularly relevant when traditional rule-based inference mechanisms falter because observations do not align with existing rules. Research into FRI techniques has been extensive within the realm of computational intelligence, yielding multiple methodologies. This presentation will centre on a prominent subset, Transformation-based FRI (T-FRI), which operates by mathematically modifying rules that bear resemblance to unmatched observations. Every technique within this category applies linear transformations of the nearest rules, automatically chosen relative to an unmatched observation. The talk will kick off with an exploration of the foundational T-FRI approach and segue into a concise overview of its expanded repertoire: adaptive T-FRI, backward T-FRI, higher-order T-FRI, dynamic T-FRI, and weighted T-FRI. Each addresses certain shortcomings inherent to the original method. Subsequently, real-world applications of these methodologies will be showcased, exemplifying their potency in tackling formidable challenges in domains like network security and medical diagnosis. These cases will underscore AI's capability to function effectively even with incomplete knowledge and ambiguous data. The presentation will wrap up with a glimpse into prospective advancements in this crucial research domain. 14:00 - 14:20 **Break** 14:20 - 16:20 **Paper Development Workshop** **Room:** 211+212 14:20 - 16:20 Workshop: The Evolutionary Computation in Health (TECH) **Room:** 213 14:20 - 16:20 Panel: What will bring AI towards AGI? Room: 301+302 14:20 - 16:20 **CEC MO2-R10:** Differential Evolution and Coevolutionary Systems Conference: CEC Room: 414+415 Session Chair(s): Alistair Benford # 14:20 Bicriteria optimisation of average and worst-case performance using coevolutionary algorithms Alistair Benford (University of Birmingham, UK (Great Britain)); Markus Olhofer and Tobias Rodemann (Honda Research Institute Europe, Germany); Per Kristian Lehre (University of Birmingham, UK (Great Britain)) # 14:40 Solving Simultaneous Continuous Multi-objective FlipIt Games using Co-Evolutionary Computation Rui Leite, Hernan Aguirre and Kiyoshi Tanaka (Shinshu University, Japan) # 15:00 Tri-objective Differential Evolution with Gradient Information Reused for Constrained Optimization Sen Yang, Zusheng Tan, Jingyu Ji, Haoran Xie, Man Leung Wong and Sam Tak Wu Kwong (Lingnan University, Hong Kong) #### 15:20 IDEL: An Improved Differential Evolution with Lissajous Mutation Angel Casas-Ordaz, Arturo Valdivia, Eduardo H. Haro, Diego Oliva, Luis A. Beltran and Itzel Aranguren (Universidad de Guadalajara, Mexico); Erick Rodriguez-Esparza (University of Deusto, Spain); Diego Campos-Peña (Universidad de Guadalajara, Mexico) **15:40** Differential Evolution Search Strategy Enhancement Through Evolutionary Game Theory Hector Joaquin Escobar-Cuevas, Erik Cuevas, Alberto L. Chang, Marco Perez Cisneros, Daniel Zaldivar, Oscar Barba-Toscano, Mario Vásquez, Nahum Aguirre and Eric L. Marin (Universidad de Guadalajara, Mexico) 16:00 Quantifying Individual and Joint Module Impact in Modular Optimization Frameworks Ana Nikolikj and Ana Kostovska (Jožef Stefan Institute, Slovenia); Diederick Vermetten (Leiden University, The Netherlands); Carola Doerr (Sorbonne University, France); Tome Eftimov (Jožef Stefan Institute, Slovenia) 14:20 - 16:20 CEC MO2-R11: Real-world Applications I Conference: CEC Room: 416 + 417 **Session Chair(s):** Thomas Runarsson ### 14:20 Improved Discrete Cat Swarm Optimization for Optimal Multi-Trip Vehicle Routing in Case of a Natural Disaster Takumi Abe and Yoshikazu Fukuyama (Meiji University, Japan) **14:40** Evolving Submodels for Column Generation in Cutting and Packing for Glulam Production Helga Ingimundardottir and Thomas Runarsson (University of Iceland, Iceland) **15:00 Optimizing Maritime Propeller Design with Continuous Evolutionary Algorithms**Joe Jonas Vogel (Federal University of Santa Catarina, Brazil); Paulo Barbato Fogaça De Almeida (Federal University of Santa Catarina - UFSC, Brazil); Paulo Lilles Jorge Drews, Jr. (Universidade Federal do Rio Grande, Brazil); Cristofer Hood Marques (Federal University of Rio Grande - FURG, Brazil); Jonata Tyska Carvalho (Federal University of Santa Catarina, Brazil) # 15:20 Learning Agents' Behavioral Patterns in Agent-based Modeling by Means of Evolutionary Algorithms Péricles Miranda (Universidade Federal Rural de Pernambuco, Brazil); Jesús Giráldez-Cru (Universidad de Granada, Spain); Moésio Wenceslau Filho (Universidade Federal Rural de Pernambuco, Brazil); Carmen Zarco (Universidad de Granada, Spain); Oscar Cordon (University of Granada, Spain) **15:40** Multi-objective virtual network functions placement and traffic routing problem Tam Thi Nguyen (VNU University of Science & Hanoi University of Science and Technology, Vietnam); Tran Ho Khanh Ly, Bùi Trọng Đức, Trần Huy Hùng and Huynh Thi Thanh Binh (Hanoi University of Science and Technology, Vietnam) **16:00 Control** of JADE Population in Limited Number of Searches for Realistic Situations Tomoya Matsuki (Osaka Prefecture University, Japan); Akira Notsu, Katsuhiro Honda, Takuya Kato and Masakazu Shibahara (Osaka Metropolitan University, Japan) 14:20 - 16:20 CEC MO2-R12: Genetic Programming I Conference: CEC Room: 418 Session Chair(s): Joao Eduardo Batista #### 14:20 Full Inclusive Genetic Programming Francesco Marchetti (DLR - Deutsches Zentrum Für Luft- Und Raumfahrt, Germany); Mauro Castelli (Universidade Nova de Lisboa, Portugal); Illya Bakurov (Michigan State University, USA); Leonardo Vanneschi (NOVA IMS Information Management School, Portugal) #### 14:40 A Novel Symbolic Regressor Enhancer Using Genetic Programming Tu-Chin Chiang, Chi-Hsien Chang and Tian-Li Yu (National Taiwan University, Taiwan) #### 15:00 Program Synthesis on Single-Layer Loop Behavior in Pure Functional Programming Tzu-Hao Hsu, Chi-Hsien Chang and Tian-Li Yu (National Taiwan University, Taiwan) # 15:20 A New Concordance Correlation Coefficient based Fitness Function for Genetic Programming for Symbolic Regression Jizhong Xu, Qi Chen and Bing Xue (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) #### 15:40 M6GP: Multiobjective Feature Engineering Joao Eduardo Batista (RIKEN-CCS, HPAIS, Japan); Nuno Miguel Rodrigues (LASIGE, Portugal); Leonardo Vanneschi (NOVA IMS Information Management School, Portugal); Sara Silva (University of Lisbon, Portugal) **16:00** Evaluating Machine Learning Techniques for Predicting Salinity in Oyster Estuaries Matthew R S Harper, Ivy Liu and Bing Xue (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand); Ross Vennell (Coastal and Freshwater Group Cawthron Institute, New Zealand) 14:20 - 16:20 CEC MO2-R13: Evolutionary Multi-objective Algorithms II Conference: CEC Room: 419 **Session Chair(s):** Markus Wagner # 14:20 From multipoint search to multiarea search: Novelty-based multi-objectivization for unbounded search space optimization Ryuki Ishizawa, Hiroyuki Sato and Keiki Takadama (The University of Electro-Communications, Japan) ### 14:40 Should Multi-objective Evolutionary Algorithms Use Always Best Non-dominated Solutions as Parents? Kazuma Sato, Naru Okumura, Keiki Takadama and Hiroyuki Sato (The University of Electro-Communications, Japan) **15:00** Interactive Final Solution Selection in Multi-Objective Optimization Cheng Gong (City University of Hong Kong, China); Yang Nan (Southern University of Science and Technology, China); Tianye Shu (Southern University of Science and Technology, China); Lie Meng Pang and Hisao Ishibuchi (Southern University of Science and Technology, China); Qingfu Zhang (City University of Hong Kong, Mexico) #### 15:20 High-throughput Multi-objective Bayesian Optimization Using Gradients Yiming Yao (City University of Hong Kong (Dongguan) & City University of Hong Kong, China); Fei Liu (City University of Hong Kong, Hong Kong); Qingfu Zhang (City University of Hong Kong, Mexico) #### 15:40 Designing Helper Objectives in Multi-objectivization Shoichiro Tanaka (The University of Fukuchiyama, Japan); Arnaud Liefooghe (University of the Littoral Opal Coast, France); Keiki Takadama and Hiroyuki Sato (The University of Electro-Communications, Japan) **16:00 Towards Adaptation in Multiobjective Evolutionary Algorithms for Integer Problems** Guenter Rudolph (TU Dortmund University, Germany); Markus Wagner (Monash University, Australia) 16:20 - 16:40 Break **CEC MO3-R10:** Discrete and Combinatorial Optimization Conference: CEC Room: 414+415 Session Chair(s): Hendrik Richter **16:40 A Q-Learning Hybrid BRKGA Applied to the Knapsack Problem with Forfeits** Gabriel Souto (Federal University of Rio de Janeiro, Brazil); Masayoshi Aritsugi and Israel Mendonca (Kumamoto University, Japan); Pedro Henrique González and Luidi Simonetti (Federal University of Rio de Janeiro, Brazil) ### 17:00 Synchronous parallel heuristics for solving the joint order batching and picker routing problem Son Thai Tran and Rui Jorge Almeida (Maastricht University, The Netherlands); Christof Defryn (University of Antwerp, Belgium); Inneke Van Nieuwenhuyse (Hasselt University, Belgium) #### 17:20 Information flow and Laplacian dynamics on local optima networks Hendrik Richter (HTWK Leipzig University of Applied Sciences, Germany); Sarah L Thomson (Edinburgh Napier University, UK (Great Britain)) ### 17:40 The Multi-Objective Vehicle Routing Problems with Parcel Lockers for Simultaneous Pickup and Delivery Weimin Chen, Yuxin Liu and Jin Liu (Shanghai Maritime University, China) **18:00 Structural Fusion of Bayesian Networks with Limited Treewidth using Genetic Algorithms**Pablo Torrijos (Universidad de Castilla-La Mancha, Spain); Jose Gamez and José Puerta (University of Castilla-La Mancha, Spain) CEC MO3-R11: Real-world Applications II Conference: CEC Room: 416+417 **Session Chair(s):** Eric O Scott #### 16:40 Realistic Tax Planning with Evolutionary Algorithms Eric O Scott (MITRE, USA); Anmol Srivastava, Abby Pusateri, Andy Taylor and Karen Jones (The MITRE Corporation, USA); Hahnemann Ortiz (University of Minnesota & Internal Revenue Service, USA) 17:00 An Unsupervised Evolutionary Approach for Indian Regional Language Summarization Jiten Parmar (IIIT Lucknow, India); Naveen Saini (IIIT Allahabad, India); Dhananjoy Dey (India) ### 17:20 Free-Form Coverage Path Planning of Quadcopter Swarms for Search and Rescue Missions using Multi-Objective Optimization Lukas Bostelmann-Arp (Otto Von Guericke University Magdeburg, Germany); Christoph Steup (Otto-Von-Guericke University of Magdeburg, Germany); Sanaz Mostaghim (Otto von Guericke University Magdeburg, Germany) 17:40 A Hybrid Approach with BRKGA and Data Mining for the Early/Tardy Scheduling Problem Israel Mendonca (Kumamoto University, Japan); Tirana Noor Fatyanosa (Brawijaya University, Indonesia); Masayoshi Aritsugi (Kumamoto University, Japan); Pedro Henrique González (Federal University of Rio de Janeiro, Brazil) #### 18:00 A quality diversity study in EvoDevo processes for engineering design Edgar Buchanan and Simon Hickinbotham (University of York, UK (Great Britain)); Rahul Dubey (Missouri State University, USA); Imelda Friel (Queens University Belfast, UK (Great Britain)); Andrew Robert Colligan and Mark Price (Queen's University Belfast, UK (Great Britain)); Andy Tyrrell (University of York, UK (Great Britain)) **CEC MO3-R12:** Genetic Programming II Conference: CEC Room: 418 Session Chair(s): Oscar Cordon # **16:40** A Hierarchical Cooperative Genetic Programming for Complex Piecewise Symbolic Regression Xinan Chen (Xi'an Jiaotong-Liverpool University, China); Wenjie Yi (Shenzhen University, China); Ruibin Bai (University of Nottingham Ningbo, China); Rong Qu (University of Nottingham, UK (Great Britain)); Yaochu Jin (Westlake University, China) # 17:00 Semi-stable Periodic Orbits of The Deterministic Chaotic Systems Designed by means of Genetic Programming Radomil Matousek and Tomas Hulka (Brno University of Technology, Czech Republic); René Lozi (University of Nice-Sophia Antipolis, France); Jakub Kudela (Brno University of Technology, Czech Republic) ### 17:20 Age-at-death Estimation based on Symbolic Regression Ensemble Learning from Multiple Annotations Enrique Bermejo, Oscar Cordon, Javier Irurita and Inmaculada Alemán (University of Granada, Spain); Ángel Rubio Salvador (Rovira i Virgili University, Spain) **17:40 Searching Search Spaces: Meta-evolving a Geometric Encoding for Neural Networks** Tarek Kunze (University of Toulouse - ISAE-SUPAERO, France); Paul Templier (University of Toulouse & ISAE-SUPAERO, France); Dennis G Wilson (ISAE-Supaero & University of Toulouse, France) ### 18:00 Enhanced Genetic Programming Models with Multiple Equations for Accurate Semi-Autogenous Grinding Mill Throughput Prediction Zahra Ghasemi (The University of Adelaide, Australia); Mehdi Neshat (Centre for Artificial Intelligence Research and Optimisation Torrens University, Australia); Chris Aldrich (Curtin University, Australia); John Karageorgos (Manta Controls Pty Ltd, Australia); Max Zanin, Frank Neumann and Lei Chen (The University of Adelaide, Australia) CEC MO3-R13: Evolutionary Multi-objective Algorithms III Conference: CEC Room: 419 **Session Chair(s):** Haoran Gu # 16:40 A Time Window Sequence-Based Evolutionary Algorithm for Solving Large-Scale Daily Task Planning Problems Peng Wu (Chinese Academy of Science, China); Shuai Shao (Anhui University, China) ### 17:00 Test Suites and Performance of Algorithms in Large-Scale Multiobjective Evolutionary Optimization Haoran Gu, Handing Wang and Jingjing Ma (Xidian University, China) ### 17:20 An Analysis of the Preferences of Distribution Indicators in Evolutionary Multi-Objective Optimization Jesús Guillermo Falcón-Cardona (Tecnologico de Monterrey, Mexico); Mahboubeh Nezhadmoghaddam (Tecnológico de Monterrey, Mexico); Emilio Bernal-Zubieta (Tecnologico de Monterrey, Mexico) # 17:40 Performance Evaluation of Evolutionary Multi-Objective Algorithms using Real-World Problems with an Additional Total Constraint Violation Objective Yang Nan and Hisao Ishibuchi (Southern University of Science and Technology, China); Tianye Shu (Southern University of Science and Technology, China) **18:00** Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms Tianye Shu (Southern University of Science and Technology, China); Yang Nan, Ke Shang and Hisao Ishibuchi (Southern University of Science and Technology, China) 18:50 - 20:30 Virtual: Multi-objective Optimization Conference: CEC Room: Zoom 24 Session Chair(s): Anqi Pan **18:50 Feature-based Coevolution Algorithm for Multimodal Multi-objective Optimization** Shanshan Yang, Anqi Pan and Xue Feng (Donghua University, China) ### 19:10 A Dual-Model Assisted Evolutionary Algorithm Based on Decomposition for Expensive Multi-Objective Optimization Yanyan Tan, Zhaomin Zhai and Yukun Zhang (Shandong Normal University, China) # 19:30 Two-stage evolutionary algorithm with two population for constrained multi-objective optimization Lupeng Hao and Junhua Liu (Xi'an Polytechnic University, China); Wei Zhang (Northeastern University, China); Meng Wang (Xi'an Polytechnic University, China); Xiaoli Wang (Xidian University, China); Fengping Wang (Xi an Polytechnic University, China) 19:50 A Two-stage Optimization Framework for Sparse Large-scale Multiobjective Optimization Huoyuan Wang and Jing Jiang (Anqing Normal University, China) ### 20:10 A Multi-modal Multi-objective Evolutionary Algorithm Considering Boundary Information Hongze Wang (University of Chinese Academy of Sciences, China); Jinxin Zhang (Chinese Academy of Sciences, China) 18:50 - 20:30 Virtual: Applications 1 Conference: CEC Room: Zoom 25 **Session Chair(s):** Christina Plump # **18:50** Finding the perfect MRI sequence for your patient --- Towards an optimisation workflow for MRI-sequences Christina Plump (DFKI GmbH, Germany); Daniel C. Hoinkiss (Mevis Fraunhofer, Germany); Jörn Huber (Fraunhofer Mevis, Germany); Bernhard J. Berger (Hamburg University of Technology, Germany); Matthias Günther (Fraunhofer Mevis, Bremen, Germany); Christoph Lueth (DFKI, Germany); Rolf Drechsler (University of Bremen/DFKI, Germany) ### 19:10 Intelligent Blocking and Prevention of SARS-CoV-2 Based on Evolutionary Reinforcement Learning Chengwei He, Huaping Hong, Lijia Ma and Qingling Zhu (Shenzhen University, China); Yuan Bai (The University of Hong Kong, Hong Kong) ### 19:30 Inferring Gene Regulatory Networks from Single-Cell RNA-Sequencing Experimental Data using Cartesian Genetic Programming José Eduardo Henriques da Silva, Sr., Heder Bernardino, Itamar Leite De Oliveira, José Jerônimo Camata and Patrick de Carvalho (Universidade Federal de Juiz de Fora, Brazil) #### 19:50 EvolBA: Evolutionary Boundary Attack under Hard-label Black Box condition Ayane Tajima and Satoshi Ono (Kagoshima University, Japan) 20:40 - 21:40 Virtual: Invited Talk I Erik Cambria Room: Zoom 1 Session Chair(s): Koichiro Yamauchi #### Seven Pillars for the Future of AI Erik Cambria In recent years, AI research has showcased tremendous potential to impact positively humanity and society. Although AI frequently outperforms humans in tasks related to classification and pattern recognition, it continues to face challenges when dealing with complex tasks such as intuitive decision-making, sense disambiguation, sarcasm detection, and narrative understanding, as these require advanced kinds of reasoning, e.g., commonsense reasoning and causal reasoning, which have not been emulated satisfactorily yet. To address these shortcomings, we propose seven pillars (https://sentic.net/seven-pillars-for-the-future-of-artificial-intelligence.pdf) that we believe represent the key hallmark features for the future of AI, namely: Multidisciplinarity, Task Decomposition, Parallel Analogy, Symbol Grounding, Similarity Measure, Intention Awareness, and Trustworthiness. 21:50 - 22:50 Virtual: Invited Talk II Hussein Abbass Room: Zoom 1 **Session Chair(s):** Hisashi Handa #### **Explaining Explainable Artificial Intelligence** **Hussein Abbass** School of Systems and Computing, University of New South Wales Explainable Artificial Intelligence (XAI) is one of the hottest topics in AI today. Ironically, one would think that a motivation for the importance of XAI is for people to better understand AI and the AI models in use. However, diversity of opinions and perspectives on XAI has created more ambiguities and confusions than helping in any meaningful way. To even explain what an explanation is, some papers in the literature have confused the term, making it close to impossible to newcomers to the field to find coherence or aspire for consistency. The diversity is reaching unhealthy state with orthogonal definitions and taking antonyms and incommensurable concepts making them synonyms. The aim of this presentation is to disambiguate XAI, taking the audience into a trip that will start from the basics, travel through contemporary literature, land on current challenges of XAI and providing food for thoughts along the way. My aim is not to unify XAI or create a universal agreement. My aim is to maximise people understanding of XAI and to have the basis for those who disagree with me to communicate their disagreement in concise statements. 23:00 - 24:40 Virtual: Multi-/Many-objective Optimization Conference: CEC Room: Zoom 24 Session Chair(s): # 23:00 Scalable Polynomial RegEM(a)O for Multi-/Many-objective Platform-based Design Optimization Problems Ritam Guha and Kalyanmoy Deb (Michigan State University, USA) 23:20 Well Trajectory Design Based on Constrained Many-objective Optimization Algorithms Zhaojun Wang, Chenwen Ding, Wenji Li and Yifeng Qiu (Shantou University, China); Dong Chen (China University of Petroleum, China); Biao Xu and Jiafan Zhuang (Shantou University, China); Yun Li (Shenzhen Institute for Advanced Study of UESTC, China); Zhun Fan (Shantou University, China) # 23:40 Sequential Transfer with Multi-Objective Genetic Algorithm for Feature Selection of Small, High-Dimensional Datasets Parth C Upadhyay (University of Missouri- Columbia, USA); Guilherme N. DeSouza (University of Missouri-Columbia, USA); John A. Lory (University of Missouri - Columbia, USA) **24:00** Biased Dyadic Crossover for Variable-Length Multi-Objective Optimal Control Problems Ben Parsonage and Christie Maddock (University of Strathclyde, UK (Great Britain)) ### 24:20 A mobile application for Hypoglycemia and Hyperglycemia prediction by Genetic Programming J. Ignacio Hidalgo and Marina de la Cruz (Universidad Complutense de Madrid, Spain); Esther Maqueda (Hospital Universitario de Toledo, Spain); Oscar Garnica (Complutense U. of Madrid, Spain); J. Manuel Velasco (Universidad Complutense de Madrid, Spain) 23:00 - 24:40 Virtual: Applications 2 Conference: CEC Room: Zoom 25 Session Chair(s): Wenjing Hong **23:00** An Elite Archive-Assisted Multi-Objective Evolutionary Algorithm for mRNA Design Wenjing Hong (Shenzhen University, China); Cheng Chen (Southern University of Science and Technology, China); Zexuan Zhu (Shenzhen University, China); Ke Tang (Southern University of Science and Technology, China) #### 23:20 Neural network agents trained by declarative programming tutors Julian Szymański and Jan Dobrosolski (Gdansk University of Technology, Poland); Higinio Mora (University of Alicante, Spain) **23:40** Emotion-Conditioned MusicLM: Enhancing Emotional Resonance in Music Generation Yuelang Sun (Auckland University of Auckland, New Zealand); Matthew M.Y. Kuo (Auckland University of Technology, New Zealand); Xiaodan Wang (Yanbian University, China); Weihua Li (Auckland University of Technology, New Zealand); Quan Bai (University of Tasmania, Australia) **24:00** Evolutionary Multitasking with Compatibility Graph for Point Cloud Registration Hangqi Ding, Jun Jiang, Yue Wu, Hao Li, Maoguo Gong, Wenping Ma and Qiguang Miao (Xidian University, China) # 24:20 Evaluation Framework for Al-driven Molecular Design of Multi-target Drugs: Brain Diseases as a Case Study Arthur Cerveira, Frederico Kremer, Darling de Andrade Lourenço and Ulisses B Corrêa (Universidade Federal de Pelotas, Brazil) #### July 2, 2024 8:20 - 10:00 Workshop: International Workshop on Forging Trust in Artificial Intelligence **Room:** 211+212 8:20 - 10:00 Workshop: Workshop on Computational Intelligence Applications **Room:** 213 8:20 - 10:00 Panel: Inside the Editorial Room: Conversations with CIS Editors-in-Chief Room: 301+302+303+304 8:20 - 10:00 CEC TU1-R10: Biometrics, Bioinformatics and Biomedical Applications Conference: CEC Room: 414+415 **Session Chair(s):** Wilfried Segretier **8:20 A Survey of Applications of Multi-Objective Evolutionary Algorithms in Biotechnology** Carlos Felipe Coello Castillo (UAM Cuajimalpa, Mexico); Carlos Coello Coello (Cinvestav, Mexico) **8:40 Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation** Siddartha Reddy, Mukkamala Venkata Sai Prakash, Varun V and Saisubramaniam Gopalakrishnan (Quantiphi Analytics, India); Vishal Vaddina (Quantiphi, Canada) 9:00 Prediction of Mycobacterium tuberculosis lineages from annotated whole genome sequences: An evolutionary approach Wilfried Segretier (University of French West Indies, Guadeloupe); Erick Stattner (University of the French West Indies and Guiana & LAMIA Lab., Martinique); David Couvin (University of French West Indies, Guadeloupe); Nalin Rastogi (Institut Pasteur, France) **9:20** Data sampling via Active Learning in Cartesian Genetic Programming for Biomedical Data Yuri Lavinas (University of Toulouse, France); Nathaniel Haut (Michigan State University, France); Bill Punch (USA); Wolfgang Banzhaf (Memorial University of Newfoundland, Canada); Sylvain Cussat-Blanc (University of Toulouse 1 Capitole- Irit, France) 8:20 - 10:00 **CEC TU1-R11:** Real-world Applications III Conference: CEC Room: 416+417 **Session Chair(s):** Takafumi Fukase **8:20 Optimization of Node Reduction Using BRKGA for GNN-Based Traffic Speed Forecasting** Yuto Inokuchi (Kumamoto University, Japan); Pedro Henrique González (Federal University of Rio de Janeiro, Brazil); Israel Mendonca and Masayoshi Aritsugi (Kumamoto University, Japan) #### **8:40 Evolving Design For Engineering Structures** Rahul Dubey (Missouri State University, USA); Simon Hickinbotham and Edgar Buchanan (University of York, UK (Great Britain)); Andrew Robert Colligan (Queen's University Belfast, UK (Great Britain)); Imelda Friel (Queens University Belfast, UK (Great Britain)); Mark Price (Queen's University Belfast, UK (Great Britain)); Andy Tyrrell (University of York, UK (Great Britain)) **9:00 Extending Lexicase DE for a Multi-Niche Constraint Satisfaction Industrial Design Problem** Takafumi Fukase (TDK Corporation, Japan); Yuta Kobayashi and Claus Aranha (University of Tsukuba, Japan) **9:20 Dynamic Multi-Workflow Scheduling: A Comparative Analysis of Real-time Data** Sugandha Rathi (Amity University, India); Deepti Mehrotra (AMITY School of Engineering and Technology & Amity University, India); Renuka Nagpal (Amity University, India); Gautam Srivastava (Brandon University & China Medical University, Canada) ### 9:40 MVBA\\_TSC: Majority Voting and Bayesian Average-based Trustful Service Composition in Cloud and Edge Environments Faten Sebri (University of Jaén, Spain); Rocío Pérez de Prado (University of Jaen, Spain); Zaki Brahmi (Higher Institute of Computer and Communication Techniques, Tunisia) 8:20 - 10:00 CEC TU1-R12: SS on Adaptive EC and SI Algorithms Conference: CEC Room: 418 Session Chair(s): #### 8:20 An Adaptive Metaheuristic Framework for Changing Environments Bestoun S. Ahmed (Karlstad University, Sweden) ### 8:40 Effectiveness of an ACO algorithm with Levy Flight for Large-scale Constraint Satisfaction Problems Takuma Onagi, Kazunori Mizuno and Koichiro Sato (Takushoku University, Japan) #### 9:00 Q-Learning-Driven Framework for High-Dimensional Optimization Problems Kanchan Rajwar and Kusum Deep (Indian Institute of Technology Roorkee, India) ### 9:20 Deep Reinforcement Learning Based Adaptive Environmental Selection for Evolutionary Multi-Objective Optimization Ye Tian, Lianjie Yao, Shuai Shao, Yajie Zhang and Xingyi Zhang (Anhui University, China) #### 9:40 Bias in Standard Self-Adaptive Evolution Strategies Amir Omeradzic and Hans-Georg Beyer (Vorarlberg University of Applied Sciences, Austria) 8:20 - 10:00 CEC TU1-R13: Evolutionary Multi-objective Algorithms IV Conference: CEC Room: 419 **Session Chair(s):** Arnaud Liefooghe **8:20 MOW-P: A Simple yet Efficient Partial Neighborhood Walk for Multiobjective Optimization**Matthieu Basseur, Arnaud Liefooghe and Sara Tari (University of the Littoral Opal Coast, France) #### 8:40 Repeated ε-Sampling for Many-objective Optimization Yu Takei, Hernan Aguirre and Kiyoshi Tanaka (Shinshu University, Japan) **9:00** An Effective Algorithm Based on Space Net Optimization for Multi-Objective Optimization Chun-Wei Tsai, Cheng-Hao Lin and Wei-Hong Wang (National Sun Yat-sen University, Taiwan) **9:20 Pareto Front Estimation Model Optimization for Aggregative Solution Set Representation**Naru Okumura, Keiki Takadama and Hiroyuki Sato (The University of Electro-Communications, Japan) # 9:40 A Federated Data-driven Multiobjective Evolutionary Algorithm via Continual Learnable Clustering Takato Kinoshita, Naoki Masuyama and Yusuke Nojima (Osaka Metropolitan University, Japan) 8:20 - 18:40 Exhibition Room: 501+502 10:00 - 10:20 **Break** 10:20 - 11:30 IEEE Frank Rosenblatt Award Ceremony and Recipient Plenary Talk by Marios M. Polycarpou Room: 301+302+303+304 Session Chair(s): Yaochu Jin #### Connecting Computational Intelligence to the Cyber-Physical World Marios M. Polycarpou University of Cyprus The development of cyber-physical systems with multiple sensor/actuator components and feedback loops has given rise to advanced automation applications, including energy and power, intelligent transportation, water systems, manufacturing, etc. Traditionally, feedback control has focused on enhancing the tracking and robustness performance of the closed-loop system; however, as cyber-physical systems become more complex and interconnected and more interdependent, there is a need to refocus our attention not only on performance but also on the resilience of cyber-physical systems. In situations of unexpected events and faults, computational intelligence can play a key role in improving the fault tolerance of cyber-physical systems and preventing serious degradation or a catastrophic system failure. The goal of this presentation is to provide insight into the design and analysis of intelligent monitoring methods for cyber-physical systems, which will ultimately lead to more resilient societies. 11:30 - 13:00 Lunch Keynote talk by Masashi Sugiyama Conference: IJCNN Room: 301+302 Session Chair(s): Petia Georgieva #### **Towards More Robust and Reliable Machine Learning** Masashi Sugiyama Riken, The University of Tokyo In statistical machine learning, training data is often full of uncertainties due to insufficient information, label noise, and bias. In this talk, I will give an overview of our research on reliable machine learning, including weakly supervised learning, noise-robust learning, and transfer learning. Then, I will discuss our recent challenges to integrate these approaches and develop a generic machine learning methodology with fewer modeling assumptions. 13:00 - 14:00 **Keynote talk by Handing Wang** Conference: CEC Room: 303+304 Session Chair(s): Yaochu Jin #### **Challenges in Data-Driven Evolutionary Optimization** Handing Wang Xidian University Many real-world problems that are optimized based on data collected from historical records, numerical simulations, or physical experiments are called data-driven optimization problems. The interdisciplinary research area of data-driven evolutionary optimization involves techniques in data science, machine learning, and evolutionary algorithms. In an evolutionary data-driven optimization framework, data will be collected at first. Then, surrogate models, which are machine learning models, are built from the data to approximate the real objective functions and / or constraint functions. Given the approximated objective or constraint functions, evolutionary algorithms can then be applied to perform optimization. This talk will highlight the current challenges of data-driven evolutionary optimization based on the view of real-world applications. Also, the techniques to address those challenges will be introduced. **Keynote Talk by Francisco Herrera** **Conference:** FUZZ-IEEE **Room:** 503 Session Chair(s): Susana Vieira #### Fuzzy Systems to Support Safe and Trustworthy Artificial Intelligence Francisco Herrera University of Granada Artificial Intelligence (AI) has matured as a technology, AI has quietly entered our lives, and it has taken a giant leap in the last year. Image generative AI models or the latest evolutions of large language models have meant that AI has gone, in just a few months, practically from science fiction to being an essential part of the daily lives of hundreds of millions of people around the world. This emergence goes hand in hand with a growing global debate on the ethical dimension of AI which raises the need for responsible, fair, inclusive, trustworthy, safe, transparent and accountable frameworks. Two essential concepts emerge in this scenario. 1) Trustworthy AI, supported on the legal, ethical, and technical robustness pillars, including seven technical requirements. 2) Al safety, which encompass machine ethics and Al alignment, aiming to make Al systems moral and beneficial, and robustness technical problems (including monitoring systems for risks, robustness against adversaries, detecting malicious use, attacks and backdoors, ...) Safe and trustworthy AI is a critical area to meet upcoming regulations, the necessary auditability metrics for their analysis and compliance, address ethical issues, manage risk analysis in human-Al system interaction, and ensure the technical soundness of responsible Al systems (auditability and accountability during its design, development and use). This talk addresses the role that fuzzy systems can play in supporting the technical requirements of safe and trustworthy AI. The use of fuzzy sets and systems can support auditability and accountability metrics, to address different technical requirements for trustworthy (explainability, privacy and federated learning, fairness, ...), and to design fuzzy monitoring systems for robustness, ... Finally, we should delve into another essential aspect, discuss and think about the development of fuzzy technologies that fit into the design requirements for auditability and design frameworks for accountable AI systems. This is a great opportunity to explore in today's emerging safe and trustworthy AI scenario. 14:00 - 14:20 Break 14:20 - 18:40 Workshop: International Workshop on Forging Trust in Artificial Intelligence **Room:** 211+212 14:20 - 18:40 **Workshop on Computational Intelligence Applications** **Room:** 213 14:20 - 16:20 CEC TU2-R10: SS on The 2nd Edition of the Quantum Artificial Intelligence Conference: CEC Room: 414+415 Session Chair(s): #### 14:20 An Innovative Knowledge Learning Adaptive Quantum-inspired Algorithm for Trend Ratio-Based Portfolio Construction Model Shu-Yu Kuo (National Taiwan University, Taiwan); Yu-Chi Jiang (Princeton University, USA); Ching-Hsuan Wu, Cheng-Yen Hua and Yun-Ting Lai (National Chi Nan University, Taiwan); Yao-Hsin Chou (National Chi-Nan University, Taiwan) #### 14:40 A Quantum-inspired Multi-objective Portfolio Strategy Based on Trend Ratio Model in Global Financial Network Yao-Hsin Chou (National Chi-Nan University, Taiwan); Yun-Ting Lai, Yong Feng Tong, Alvin Young, Ming-Ho Chang and Kun-Min Wu (National Chi Nan University, Taiwan); Yu-Chi Jiang (Princeton University, USA); Shu-Yu Kuo (National Taiwan University, Taiwan) # **15:00** Urban Land Cover Classification with Efficient Hybrid Quantum Machine Learning Model Fan Fan (Technical University of Munich & German Aerospace Center, Germany); Yilei Shi (Technical University of Munich, Germany); Xiao Xiang Zhu (German Aerospace Center (DLR), Remote Sensing Technology & Technical University of Munich (TUM), Signal Processing in Earth Observation, Germany) # **15:20** Hybrid Quantum Annealing with Innovative Trend Ratio Model for Portfolio Optimization Yao-Hsin Chou (National Chi-Nan University, Taiwan); Ching-Hsuan Wu and Pei-Shin Huang (National Chi Nan University, Taiwan); Shu-Yu Kuo (National Taiwan University, Taiwan); Yu-Chi Jiang (Princeton University, USA); Sy-Yen Kuo and Ching-Ray Chang (National Taiwan University, Taiwan) **15:40** Improving Quantum Genetic Algorithms through Recursive Search Space Exploration Giovanni Acampora (University of Naples Federico II & Istituto Nazionale di Fisica Nucleare, Italy); Autilia Vitiello (University of Naples Federico II, Italy) **CEC TU2-R11:** SS on Advances in CI in Health and Medicine (ACIHM) Conference: CEC Room: 416+417 **Session Chair(s):** Yasin Mamatjan and Tayo Obafemi-Ajayi **14:20** Indoor Area Location System Using UWB Technology and Axis-Linear Bounding Boxes José Luis López Ruiz, Sr. and Jose María Jiménez Villar (University of Jaén, Spain); Antonio Pedro Albín Rodríguez (Education and Sports Council, Spain); Macarena Espinilla Estevez (University of Jaen, Spain) **14:40 Optimized Drug Design using Multi-Objective Evolutionary Algorithms with SELFIES** Tomoya Hömberg (Otto-Von-Guericke University, Germany); Sanaz Mostaghim (Otto von Guericke University Magdeburg, Germany); Satoru Hiwa and Tomoyuki Hiroyasu (Doshisha University, Japan) **15:00** Hyperdimensional Computing Approaches in Single Cell RNA Sequencing Classification Petros Barmpas, Sotiris K. Tasoulis and Spiros Georgakopoulos (University of Thessaly, Greece); Vassilis Plagianakos (University Of Thessaly, Greece) **15:20** Pan-Cancer Classification System with Explainable AI Interpretation: A Feasibility Study Yasin Mamatjan (Thompson Rivers University & Princess Margaret Cancer Centre, Canada) **15:40** Introducing the RSNA-VR and the RSNA-DE algorithms for Diagnosing Alzheimer's Disease Antonio Della Cioppa, Angelo Marcelli and Antonio Iannaccone (University of Salerno, Italy) #### 16:00 Promoting Diversity in the Evolution of Biological Sequence Data Michael Dube (University of Guelph, Canada); Sheridan Houghten (Brock University, Canada); Steffen Graether (University of Guelph, Canada) Panel: How to Improve and Promote EC Research and EC Conferences Conference: CEC Room: 418 14:20 - 16:20 CEC TU2-R13: SS on Generative AI and Heuristic Optimization Conference: CEC Room: 419 Session Chair(s): **14:20 Generating** Interior Images with Latent User Preferences through GANs Sakabe Kentaro and Keiko Ono (Doshisha University, Japan); Panagiotis Adamidis (International Hellenic University, Greece); Naohiro Masuda (Doshisha University, Japan) ### 14:40 Exploring Generative Als as Population Variation Operator in Multi-objective Optimization Problems Gerardo Ibarra-Vazquez and Hugo Terashima-Marín (Tecnologico de Monterrey, Mexico); Carlos Coello (Cinvestav, Mexico) #### 15:00 Prompt Evolutionary Design Optimization with Generative Shape and Vision-Language models Melvin Wong (Nanyang Technological University, Singapore); Thiago Rios and Stefan Menzel (Honda Research Institute Europe, Germany); Yew Soon Ong (School of Computer Engineering, Nanyang Technological University, Singapore) **15:20 ROIL:** Rule Optimization via Large Language Model for Imitation Learning Yossathorn Tianrungroj (The University of Tokyo, Japan); Hitoshi Iba (University of Tokyo, Japan) #### 15:40 Assembling Fragmented Domain Knowledge: A LLM-Powered QA System for Taiwan Cinema Enchun Kuo and Yea-Huey Su (National Central University, Taiwan) 14:20 – 16:40 Poster Session Conference: CEC Room: 501+502 Session Chair(s): Petia Georgieva, Zenglin Xu, and Spiros Georgakopoulos #### **61: Large Language Models as Evolutionary Optimizers** Shengcai Liu (Agency for Science, Technology and Research & Southern University of Science and Technology, Singapore); Caishun Chen (ASTAR, Singapore); Xinghua Qu (Shanda Group, Singapore); Ke Tang (Southern University of Science and Technology, China); Yew Soon Ong (School of Computer Engineering, Nanyang Technological University, Singapore) #### 62: A Hypervolume Contribution Approximation Method Based on Angular Points Chengxin Wen (Beijing Institute of Tecnoligy, China); Lihua Li and Hongbin Ma (Beijing Institute of Technology, China) **63: Evolving Priority Rules for Online Yard Crane Scheduling with Incomplete Tasks Data** Chenwei Jin (University of Nottingham Ningbo China, China); Ruibin Bai (University of Nottingham Ningbo, China); Huayan Zhang (University of Nottingham Ningbo China, China) #### **64:** A Niching-based Reproduction and Preselection-based Multiobjective Differential Evolution for Multimodal Multiobjective Optimization Hongyu Lin, Jing Liang and Caitong Yue (Zhengzhou University, China); Yaonan Wang (Hunan University, China) ### 65: Exploring multi-objective evolutionary approaches for path planning of autonomous mobile robots Miguel Angel Jiménez-Domínguez, Néstor Andrés García-Rojas and Saúl Zapotecas-Martínez (National Institute of Astrophysics Optics and Electronics, Mexico); Raquel Díaz Hernández (Instituto Nacional de Astrofisica, Optica y Electronica, Mexico); Leopoldo Altamirano (National Institute for Astrophysics, Optics and Electronics, Mexico) #### **66:** A Q-learning Evolutionary Multiobjective Framework for Multiobjective Optimization with Separable and Interacting Variables Hui Li (Xi'an Jiaotong University, China); Yanhui Tang (Xi'an Jiaotong University, China); Yuxiang Shui (Xi'an Jiaotong University, China); Jianyong Sun (Xi'an Jiaotong University, China) **67:** An Enhanced Particle Swarm Algorithm Based on Fitness Landscape Information Zhenya Diao (Minnan Normal University, China) ### **68:** Multiobjective Bayesian Optimization for Antenna Placement in In-building Distributed Antenna System Xilei Wu (City University of Hong Kong, Hong Kong); Pei-Qiu Huang (Central South University, China); Linqi Song (City University of Hong Kong, Hong Kong); Hai-Lin Liu (Guangdong University of Technology, China); Qingfu Zhang (City University of Hong Kong, Hong Kong) #### **69: QGAPHEnsemble: Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting** Anuvab Sen, Mayukhi Paul and Ananya Sutradhar (Indian Institute of Engineering Science and Technology, India); Sujith Sripadam Sai (National Institute of Technology Rourkela, India); Chhandak Mallick (Jadavpur University, India); Aakash Mallik (National Institute of Technology Karnataka Surathkal, India) #### 70: A Bilevel Evolutionary Algorithm Based on Upper-level-driven Lower-level Search Ning Yang, Hai-Lin Liu and Lei Chen (Guangdong University of Technology, China); Yuping Wang (Xidian University, China); Yiu-ming Cheung (Hong Kong Baptist University, Hong Kong) #### 71: A Survey on Multi-Objective Optimization in Microgrid Systems Saiful Islam (Otto-von-Guericke-University Magdeburg, Germany); Sanaz Mostaghim (Otto von Guericke University Magdeburg, Germany); Michael Hartmann (SRH University of Applied Sciences, Germany) **72:** Harnessing LSTMs for Enhanced Prediction of Psychotic Episodes in Schizophrenia Spectrum Paraskevi V. Tsakmaki, Sotiris K. Tasoulis and Spiros Georgakopoulos (University of Thessaly, Greece); Vassilis Plagianakos (University Of Thessaly, Greece) 16:40 - 18:40 **CEC TU3-R10:** SS on Evolutionary Deep Learning and Applications Conference: CEC Room: 414+415 **Session Chair(s):** Seyed Jalaleddin Mousavirad #### 16:40 An Evolutionary Compact Deep Transfer Learning with CNN for Hyper-parameter Tuning in Temporal Sorting of Plant Growth Seyed Jalaleddin Mousavirad (Mid Sweden University, USA); Irida Shallari and Mattias O'Nils (Mid Sweden University, Sweden) #### 17:00 Automatic design of LSTM networks with skip connections through evolutionary and differentiable architecture search Ramya Anasseriyil Viswambaran (ESR, New Zealand); Seyed Mohammad Nekooei, Gang Chen and Bing Xue (Victoria University of Wellington, New Zealand) #### 17:20 Multi-Optimiser Training for GANs based on Evolutionary Computation Yixia Zhang and Yu Xue (Nanjing University of Information Science and Technology, China); Ferrante Neri (University of Surrey, UK (Great Britain)) **17:40** Characterising Deep Learning Loss Landscapes with Local Optima Networks Yuyang Zhou (University of Nottingham Ningbo China, China); Ferrante Neri (University of Surrey, UK (Great Britain)); Ruibin Bai (University of Nottingham Ningbo, China) #### 18:00 Genetic Drift Regularization: on preventing Actor Injection from breaking Evolution Strategies Paul Templier (University of Toulouse & ISAE-SUPAERO, France); Emmanuel Rachelson (ISAE-SUPAERO, Université de Toulouse, France); Antoine Cully (Imperial College London, UK (Great Britain)); Dennis G Wilson (ISAE-Supaero & University of Toulouse, France) ### **18:20** Evolutionary Design of Long Short Term Memory Networks and Ensembles through Genetic Algorithms Ramya Anasseriyil Viswambaran (ESR, New Zealand); Seyed Mohammad Nekooei, Gang Chen and Bing Xue (Victoria University of Wellington, New Zealand) 16:40 - 18:40 **CEC TU3-R11:** SS on Advances in Decomposition-based EMO Conference: CEC Room: 416+417 **Session Chair(s):** Yunpeng Ba #### 16:40 MOEA/D-CMA Made Better with (1+1)-CMA-ES Chengyu Lu and Yilu Liu (City University of Hong Kong, Hong Kong); Qingfu Zhang (City University of Hong Kong, Mexico) #### 17:00 Decomposition-Based Memetic Algorithm for Multi-Objective Fleet Size and Mix Vehicle Routing Problem Yunpeng Ba, Ruihao Zheng and Zhenkun Wang (Southern University of Science and Technology, China) ## **17:20** Push and Pull Search with Directed Mating for Constrained Multi-objective Optimization Ryo Takamiya, Minami Miyakawa, Keiki Takadama and Hiroyuki Sato (The University of Electro-Communications, Japan) ### 17:40 On a Better Understanding of Unique Identifiers of Pareto Solutions for Multi-criterion Optimization, Visualization, and Decision-making Anirudh Suresh and Kalyanmoy Deb (Michigan State University, USA) #### 18:00 Distributed Bit Climbing Algorithm for Binary Multi-objective Optimization Yudai Tagawa, Hernan Aguirre and Kiyoshi Tanaka (Shinshu University, Japan) 16:40 - 18:40 **CEC TU3-R12:** Evolutionary Robotics Conference: CEC Room: 418 **Session Chair(s):** Radomil Matousek #### **16:40** Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems Jakub Kudela, Martin Juricek and Roman Parak (Brno University of Technology, Czech Republic); Alexandros Tzanetos (Jönköping University, Sweden); Radomil Matousek (Brno University of Technology, Czech Republic) **17:00** Genetic Algorithm-based Robot Path Planning with the Extraction of Topological Map Zhen Liu (The University of Tokyo, Japan); Jinglue Xu (the University of Tokyo, Japan); Hitoshi Iba (University of Tokyo, Japan) **17:20** The Virtual Programmable Logic Device, a Novel Machine Learning Architecture Fraser Borrett and Mark Beckerleg (Auckland University of Technology, New Zealand) ### 17:40 A Comparison of a Digital and Floating-Point Virtual Programmable Logic Device and an Artifical Neural Network Evolved for Robotic Navigation Fraser Borrett and Mark Beckerleg (Auckland University of Technology, New Zealand) #### 18:00 Heterogeneous UAV Swarm Task Allocation via Hierarchy Tolerance Pigeon-Inspired Optimization Zhiqiang Zheng, Haibin Duan and Yongbin Sun (Beihang University, China) 16:40 - 18:40 **CEC TU3-R13:** Evolutionary Multitasking and Transfer Learning Conference: CEC Room: 419 Session Chair(s): Eric O Scott **16:40** Evolutionary Constrained Multi-Factorial Optimization Based on Task Similarity Shio Kawakami, Keiki Takadama and Hiroyuki Sato (The University of Electro-Communications, Japan) ### 17:00 Surrogate-Assisted Adaptive Knowledge Transfer for Expensive Multitasking Optimization Jiangtao Shen, Huachao Dong, Peng Wang, Xinjing Wang and Wenxin Wang (Northwestern Polytechnical University, China) **17:20** Similar Locality based Transfer Evolutionary Optimization for Minimalistic Attacks Wenqiang Ma, Yaqing Hou and Hua Yu (Dalian University of Technology, China); Xiangrong Tong (Yantai University, China); Qiang Zhang (Dalian University of Technology, China) #### 17:40 Varying Difficulty of Knowledge Reuse in Benchmarks for Evolutionary Knowledge Transfer Eric O Scott (MITRE, USA); Kenneth A De Jong (George Mason University, USA) **18:00 One-Shot** Surrogate for Evolutionary Multiobjective Neural Architecture Search Kuangda Lyu, Maoguo Gong, Hao Li, Yuan Gao and Yue Wu (Xidian University, China); Dan Feng (Xi'an University of Posts and Telecommunications, China); Jiao Shi and Yu Lei (Northwestern Polytechnical University, China) #### **18:20** A Review on Evolutionary Multiform Transfer Optimization Yinglan Feng (The Hong Kong Polytechnic University, Hong Kong); Liang Feng (Chongqing University, China); Xiaoming Xue (City University of Hong Kong, Hong Kong); Sam Tak Wu Kwong (Lingnan University, Hong Kong); Kay Chen Tan (The Hong Kong Polytechnic University, Hong Kong) 19:00 - 20:40 Virtual: Neural Networks **Conference:** CEC **Room:** Zoom 25 **Session Chair(s):** Ngoc Hoang Luong #### 19:00 Zero-Cost Proxy-Based Hierarchical Initialization for Evolutionary Neural Architecture Search Minh Le and An Vo (University of Information Technology, Vietnam); Ngoc Hoang Luong (University of Information Technology (UIT), VNU-HCM, Vietnam) **19:20** Effective Training of PINNs by Combining CMA-ES with Gradient Descent Lin Liu (Beihang University, China); Yuan Yuan (Beihang University Zhongguancun Laboratory, China) #### 19:40 Neural Network-Assisted Particle Swarm Dynamic Optimization Zhi Liu, Wei Song and Mingshuo Song (Jiangnan University, China) ### **20:00** Evolutionary Deep Reinforcement Learning via Hybridizing Estimation-of-Distribution Algorithms with Policy Gradients Thai Bao Tran (University of Information Technology - UIT, Vietnam); Ngoc Hoang Luong (University of Information Technology (UIT), VNU-HCM, Vietnam) 21:00 - 22:40 Virtual: Evolutionary Computation for Feature Selection, Extraction and Dimensionality Reduction Conference: CEC Room: Zoom 25 Session Chair(s): Songbai Liu #### 21:00 Evolutionary Multiobjective Feature Selection Assisted by Unselected Features Xuan Duan (ShenZhen University, China); Songbai Liu, Junkai Ji, Lingjie Li and Qiuzhen Lin (Shenzhen University, China); Kay Chen Tan (The Hong Kong Polytechnic University, Hong Kong) #### 21:20 Feature selection for computer-aided diagnosis via a novelty designed binary harris hawk algorithm Minhui Dong and Yuki Todo (Kanazawa University, Japan) 21:40 Feature Selection for GPSR based on Maximal Information Coefficient and Shapley Values Mohamad Rimas Mohamad Anfar and Qi Chen (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) #### 22:10 Enhancing Diversity in Multi-objective Feature Selection Sevil Zanjani Miyandoab (Ontario Tech University, Canada); Shahryar Rahnamayan (Brock University, Canada); Azam Asilian Bidgoli (Wilfrid Laurier University, Canada); Sevda Ebrahimi (Ontario Tech University, Canada); Masoud Makrehchi (University of Ontario Tech, Canada) 23:00 - 24:40 **Virtual:** Evolutionary Computation in Healthcare Industry Conference: CEC Room: Zoom 25 Session Chair(s): #### 23:00 Lightweight Detection Architecture Adapted to Small Lesions Using Multiscale Sampling Method Ayu Karasudani, Masaki Ishihara, Tatsuya Yamaguchi, Ayaka Oka, Yu Hasome, Nobuhiro Miyazaki, Hiroaki Takebe and Takayuki Baba (Fujitsu Limited, Japan); Shogo Maeda, Yuko Nakamura, Toru Higaki and Kazuo Awai (Hiroshima University, Japan) 23:20 COR-MFS: A Correlation-based Multi-objective Feature Selection on EEG Signals Ananda Sutradhar (Daffodil International University, Bangladesh); Azam Asilian Bidgoli (Wilfrid Laurier University, Canada); Shahryar Rahnamayan (Brock University, Canada) #### 23:40 A surrogate-assisted genetic algorithm framework to discover peptides against COVID-19 virus Elias Silva (Federal Institute of Education Science and Technology of Rondônia, Brazil); Lucas Palmeira (Federal University of Minas Gerais, Brazil); Marcelo Garcia-Junior and Luiz Gustavo A. Martins (Federal University of Uberlândia, Brazil); Yaochu Jin (Westlake University, China); Bruno S. Andrade (State University of Southwestern Bahia, Brazil); Robinson Sabino-Silva and Murillo G. Carneiro (Federal University of Uberlândia, Brazil) #### 24:00 Feature Selection-driven Bias Deduction in Histopathology Images: Tackling Site-Specific Influences Farnaz Kheiri (University of Ontario Tech, Canada); Azam Asilian Bidgoli (Wilfrid Laurier University, Canada); Masoud Makrehchi (University of Ontario Tech, Canada); Shahryar Rahnamayan (Brock University, Canada) ### 24:20 MiRNN: A mutual information augmented recurrent neural network framework for reconstruction of gene regulatory networks Prianka Dey (University of Calcutta & Narula Institute of Technology, India); Abhinandan Khan (ARP Engineering & University of Calcutta, India); Goutam Saha (North Eastern Hill University, India); Rajat Pal (University of Calcutta, India) #### July 3, 2024 8:20 - 10:00 **CEC WE1-R10:** SS on Bilevel Optimization: Methods and Applications Conference: CEC Room: 414+415 Session Chair(s): Hemant K Singh **8:20** A Bi-level Evolutionary Model Tree Induction Approach for Regression Safa Mahouachi (SMART Lab, ISG, University of Tunis, Tunisia); Maha Elarbi (SMART Lab, ISG-Tunis, University of Tunis, Tunisia); Khaled Sethom (SMART Lab ISG Tunis University of Tunis, Tunisia); Slim Bechikh (SMART Lab, University of Tunis, ISG, Tunisia); Carlos Coello (Cinvestav, Mexico) **8:40** Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach Ankur Sinha (Indian Institute of Management Ahmedabad, India); Dhaval Pujara (Indian Institute of Management Ahmedabad, India); Hemant K Singh (The University of New South Wales, Australia) **9:00** Improving the Performance of Bilevel Evolutionary Algorithms using Variable Associations Bing Wang (University of New South Wales, Australia); Hemant K Singh (The University of New South Wales, Australia); Tapabrata Ray (University of New South Wales at ADFA, Australia) ### 9:20 A Bi-Level Multi-Objective Energy Management System for Renewable Energy Self-Consumption Thalis Papakyriakou, Andreas Pamboris and Andreas Konstantinidis (Frederick University, Cyprus) ### 9:40 A Nested Evolutionary Algorithm for Solving a Bilevel Competitive Location Problem: Optimistic vs. Pessimistic Approaches José-Fernando Camacho-Vallejo (Tecnologico de Monterrey, Mexico); Carlos E. Corpus (Universidad de Nuevo Leon, Mexico) 8:20 - 10:00 **CEC WE1-R11:** SS on Nature-Inspired Constrained Optimization Conference: CEC Room: 416+417 **Session Chair(s):** Efrén Mezura-Montes **8:20** Natural Evolution Strategy for Black-Box Function Optimization with Implicit Constraint Masato Nishikubo and Isao Ono (Tokyo Institute of Technology, Japan) **8:40 Chance Constrained Optimization for Wind Power Curve Fitting with Unclean Data** Xun Shen (Osaka University & Tokyo Institute of Technology, Japan) **9:00 Constraint Consensus for Solving Large-scale Constrained Optimization Problems**Noha Hamza (University of New South Wales Canberra, Australia); Sarker Amin Ruhul (University of New South Wales, Australia); Daryl Essam (University of New South Wales at the Australian Defence Force Academy UNSW@ADFA, Australia); Saber Elsayed (University of New South Wales, Australia) **9:20** An Improved Gradient-based Repair Method for Constrained Numerical Optimization Jingyu Ji, Sen Yang, Kester Kwan Yeung Lee, Hon Wing Billy Chiu, Man Leung Wong and Sam Tak Wu Kwong (Lingnan University, Hong Kong) 8:20 - 10:00 **CEC WE1-R12:** J2C Paper Presentation I Conference: CEC Room: 418 Session Chair(s): Lie Meng Pang #### 8:20 Introducing Anti-Dominance Structures in Multi-objective Optimization Kalyanmoy Deb (Michigan State University, USA); Mathias Ehrgott (Lancaster University, USA) #### 8:40 Multi-Objective Ensemble Learning for Product Quality Prediction in Iron and Steel Industry Xianpeng Wang (Northeastern University, China); Lixin Tang (China); Yao Wang (Northeastern University, China); Qingfu Zhang (City University of Hong Kong, Mexico) #### 9:00 Mitigating Unfairness via Evolutionary Multi-objective Ensemble Learning Qingquan Zhang and Jialin Liu (Southern University of Science and Technology, China); Zeqi Zhang (Huawei, China); Junyi Wen (Huawei Technologies, China); Bifei Mao (Huawei, China); Xin Yao (Lingnan University) #### 9:20 Hypervolume-Based Cooperative Coevolution with Two Reference Points for Multi-Objective Optimization Lie Meng Pang, Hisao Ishibuchi, Linjun He, Ke Shang and Longcan Chen (Southern University of Science and Technology, China) ### 9:40 Quality Indicators for Preference-based Evolutionary Multi-objective Optimization Using a Reference Point: A Review and Analysis (J2C track in WCCI2024) Ryoji Tanabe (Yokohama National University, Japan); Ke Li (University of Exeter, UK (Great Britain)) 8:20 - 10:00 **CEC WE1-R13:** SS on Data-Driven Evolutionary Optimization of Computationally Expensive Problems Conference: CEC Room: 419 Session Chair(s): Chaoli Sun #### 8:20 Expensive Many-objective Optimization Assisted by Adaptive Modeling Shufen Qin (Taiyuan University of Science and Technology, China); Chaoli Sun (Taiyuan University of Science and Technology, Hong Kong); Zongchao Xie (University of Melbourne, Australia) ### **8:40** Empirical Study on Averaging-based Noise-Tolerant Methods for Expensive Combinatorial Optimization Shulei Liu and Handing Wang (Xidian University, China); Wen Yao and Wei Peng (Chinese Academy of Military Science, China); Jingjing Ma (Xidian University, China) ### **9:00** Analysis of the Impact of Prediction Accuracy on Search Performance in Surrogate-assisted Evolutionary Algorithms Yuki Hanawa (Tokyo Metropolitan University, Japan); Tomohiro Harada (Saitama University, Japan); Yukiya Miura (Tokyo Metropolitan University, Japan) ### 9:20 Surrogate-Assisted Particle Swarm Optimization with Dual-Subspace Search for Large-Scale Expensive Optimization Jiajia Zhang (Taiyuan University of Science and Technology, China); Chaoli Sun (Taiyuan University of Science and Technology, Hong Kong); Guochen Zhang, Jing Li and Hui Shi (Taiyuan University of Science and Technology, China); Zongchao Xie (University of Melbourne, Australia) #### 9:40 A Meta-Learning-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Multi-Objective Optimization Problems Liqun Wen and Hongfeng Wang (Northeastern University, China) 8:20 – 18:00 Exhibition **Room:** 501+502 10:00 -10:20 **Break** 10:20 - 11:30 IEEE Frank Rosenblatt Award Ceremony and Recipient Plenary Talk by Bernadette Bouchon-Meunier Room: 301+302+303+304 Session Chair(s): Yaochu Jin #### Can intelligent systems be conscious? Bernadette Bouchon-Meunier CNRS-Sorbonne Université The concept of consciousness is complex and takes various forms. The fact that an intelligent system can be conscious has long been discussed and the questions are getting louder as we see systems springing up everywhere that seem capable of dialoguing with humans in a very natural way. We propose to look at several facets of consciousness, from phenomenological consciousness linked to perceptions to access consciousness, which gives us information about one's actions. In 1982 already, Marvin Minsky 1 was considering that self-conscious systems could be done by providing machines with ways to examine their own mechanisms while they are working. Then Jacques Pitrat 2 in 2009 claimed that, for a conscious artificial being, the possibility of monitoring its own thought enables it to explain its decisions so that they can be accepted by others, which goes in the direction of eXplainable Al. A recent study 3 provides a list of indicator properties derived from scientific theories to assess consciousness for an intelligent system. We offer an overview of some interesting aspects of consciousness from the angle of intelligent systems, which can be different from human consciousness, and we wonder to what extent a present or a future system can have such a form of consciousness and what the advantages and drawbacks are. 11:30 – 13:00 Lunch Time 13:00 - 14:00 **Networks Pioneer Award Keynote Talk by Johan Suykens** Conference: IJCNN Room: 301+302 Session Chair(s): Robert Kozma #### **Least Squares Support Vector Machines and Deep Learning** Johan Suykens Katholieke Universiteit Leuven While powerful architectures have been proposed in deep learning, with support vector machines and kernel-based methods solid foundations have been obtained from the perspective of statistical learning theory and optimization. Simple core models were obtained within the least squares support vector machines framework, related to classification, regression, kernel principal component analysis, kernel canonical correlation analysis, kernel spectral clustering, recurrent models, approximate solutions to partial differential equations and optimal control problems, etc. The representations of the models are understood in terms of primal and dual representations, respectively related to feature maps and kernels. The insights have been exploited for tailoring representations to given data characteristics, both for high dimensional input data and large scale data sets. One can either work with explicit feature maps (such as e.g. convolutional feature maps) or implicit feature maps through the kernel functions. Within this talk we will mainly focus on new insights connecting deep learning and least squares support vector machines. Related to Restricted Boltzmann machines and Deep Boltzmann machines we show how least squares support vector machine models can be transformed into so-called Restricted Kernel Machine representations. It enables to conceive new deep kernel machines, generative models, multi-view and tensor based models with latent space exploration, and obtain improved robustness and explainability. On most recent work, we will explain how the attention mechanism in transformers can be seen within the least squares support vector machine framework. More precisely it can be represented as an extension to asymmetric kernel singular value decomposition with primal and dual model representations, related to two feature maps (queries and keys) and an asymmetric kernel. In the resulting method of "Primal-Attention" a regularized loss is employed to achieve low-rank representations for efficient training in the primal. Finally, these newly obtained synergies are very promising in order to obtain the bigger and unifying picture. Several future challenges will be outlined from this perspective. 13:00 - 14:00 Keynote talk by Mengjie Zhang Conference: CEC Room: 303+304 Session Chair(s): Sanaz Mostaghim #### **Evolutionary Machine Learning: 50 Years of Progress** Mengjie Zhang Victoria University of Wellington Evolutionary machine learning have been very popular over the recent years. In this talk, I will firstly provide a brief overview of the history of evolutionary machine learning with the major developments over the past 50 years, then focus on the main paradigms of evolutionary machine learning and their successes in classification, feature selection, regression, clustering, computer vision and image analysis, scheduling and combinatorial optimisation, deep learning, transfer learning and explainable/interpretable machine learning. The main applications, challenges and lessons as well as potential opportunities will be also discussed. 13:00 - 14:00 Keynote Talk by Jie Lu Conference: FUZZ-IEEE **Room:** 503 **Session Chair(s):** Marie-Jeanne Lesot #### **Fuzzy Machine learning** Jie Lu University of Technology Sydney The talk will present the concepts, methodologies, and algorithms of fuzzy machine learning, including fuzzy transfer learning, fuzzy concept drift detection and adaptation, and fuzzy recommender systems. It will also present how the fuzzy machine learning techniques can effectively support data-driven prediction and decision-making in uncertain, complex, and dynamic situations. 14:00 - 14:20 **Break** 14:20 - 18:00 **Workshop: Computational Intelligence in Human Informatics** **Room:** 213 14:20 - 16:20 Panel: Can AI Craft AI Inspired by the Brain?: Insights from the Fathers **Room:** 301+302 14:20 - 16:20 CEC WE2-R10: SS on Explainable AI and Green Computing for Human-Centered EC Conference: CEC Room: 414+415 Session Chair(s): Guilherme N. DeSouza **14:20 Outlier Interpretation Using Regularized Auto Encoders and Genetic Algorithm** Seyed Mohamad Ali Tousi (University of Missouri - Columbia, USA); Guilherme N. DeSouza (University of Missouri-Columbia, USA) #### 14:40 Energy and Quality of Surrogate-Assisted Search Algorithms: a First Analysis Tomohiro Harada (Saitama University, Japan); Enrique Alba (University of Malaga, Spain); Gabriel Luque (University of Málaga, Spain) **15:00** Prototype Generation with the sUpervised Classifier System on kNN Matching Naoya Yatsu (The University of Electro-Communications, Japan); Hiroki Shiraishi (Yokohama National University, Japan); Hiroyuki Sato and Keiki Takadama (The University of Electro-Communications, Japan) ### 15:20 A Random Forest-Assisted Local Search for Expensive Permutation-based Combinatorial Optimization Problems Takashi Ikeguchi and Shun Sudo (Yokohama National University, Japan); Yuji Koguma (IHI Corporation, Japan); Masaya Nakata (Yokohama National University, Japan) ### 15:40 A Dual Surrogate-based Evolutionary Algorithm for High-Dimensional Expensive Multiobjective Optimization Problems Yuma Horaguchi and Masaya Nakata (Yokohama National University, Japan) #### 16:00 Oversampling-Guided Search for Evolutionary Multiobjective Optimization Norihiro Kimoto, Yuma Horaguchi and Masaya Nakata (Yokohama National University, Japan) CEC WE2-R11: SS on EC for Feature Selection, Extraction and Dimensionality Reduction Conference: CEC Room: 416+417 Session Chair(s): Bach Hoai Nguye ### 14:20 Dimensionality Reduction for Classification Using Divide-and-Conquer Based Genetic Programming Peng Wang and Bing Xue (Victoria University of Wellington, New Zealand); Jing Liang (Zhengzhou University, China); Mengjie Zhang (VUW, New Zealand) ### 14:40 Measuring Structural Complexity of GP Models for Feature Engineering over the Generations Joao Eduardo Batista (RIKEN-CCS, HPAIS, Japan); Adam Kotaro Pindur and Hitoshi Iba (University of Tokyo, Japan); Sara Silva (Universidade de Lisboa, Portugal) #### 15:00 Surrogate-Assisted Flip for Evolutionary High-Dimensional Multiobjective Feature Selection Qi-Te Yang (South China University of Technology, China); Liu-Yue Luo (South China University of Technology, China); Chunhua Chen (South China University of Technology & School of Computer Science and Engineering, South China University of Technology, China); Jian-Yu Li (Nankai University, China); Jinghui Zhong (South China University of Technology, China); Jun Zhang (SUN Yat-sen University, China); Zhi-Hui Zhan (Nankai University, China) ### 15:20 Computational Cost Reduction in Wrapper Approaches for Feature Selection: A Case of Study Using Permutational-Based Differential Evolution Jesús-Arnulfo Barradas-Palmeros and Efrén Mezura-Montes (Universidad Veracruzana, Mexico); Rafael Rivera-Lopez (Tecnológico Nacional de Mexico. Instituto Tecnológico de Veracruz, Mexico); Héctor Gabriel Acosta Mesa (University of Veracruz, Mexico) #### 15:40 Evolutionary Label Selection for Multi-label Classification Bach Hoai Nguyen and Bing Xue (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) **CEC WE2-R12:** J2C Paper Presentation II Conference: CEC Room: 418 Session Chair(s): Xiao-Fang Liu ### **14:20** A Steady-State Algorithm for Solving Expensive Multiobjective Optimization Problems With Nonparallelizable Evaluations Kamrul Hasan Rahi (University of New South Wales, Australia); Hemant K Singh (The University of New South Wales, Australia); Tapabrata Ray (University of New South Wales at ADFA, Australia) ### 14:40 TinyTLA: Topological Landscape Analysis for Optimization Problem Classification in a Limited Sample Setting Gašper Petelin and Gjorgjina Cenikj (Jožef Stefan Institute & Jožef Stefan International Postgraduate School, Slovenia); Tome Eftimov (Jožef Stefan Institute, Slovenia) ### 15:00 Transfer-Based Particle Swarm Optimization with Dynamic Differential Grouping for Large-Scale Dynamic Optimization Problems Xiao-Fang Liu and Zhi-Hui Zhan (Nankai University, China); Jun Zhang (SUN Yat-sen University, China) #### 15:20 Evolutionary Multitask Multimodal Optimization Based on Distributed Knowledge Transfer Gao Kailai (Northeastern University, China) ### **15:40** A Data-Driven Evolutionary Transfer Optimization for Expensive Problems in Dynamic Environments Ke Li (University of Exeter, UK (Great Britain)); Xin Yao (University of Birmingham, UK (Great Britain)); Renzhi Chen (Tsinghua University, China) CEC WE2-R13: Surrogate-Assisted Evolutionary Computation Conference: CEC Room: 419 **Session Chair(s):** Chaoli Sun and Cuie Yang #### 14:20 Infill Criterion Ensemble in Multi-Objective Evolutionary Algorithm for Mixed-Variable Problems Yongcun Liu, Handing Wang and Jingjing Ma (Xidian University, China) ### 14:40 Surrogate Assisted Large-scale Expensive Optimization With Difference-based Infill Criterion Wang Lu (Taiyuan University of Science and Technology, China); Chaoli Sun (Taiyuan University of Science and Technology, Hong Kong); Guochen Zhang, Kaili Zhao and Hui Shi (Taiyuan University of Science and Technology, China); Zongchao Xie (University of Melbourne, Australia) ### 15:00 Surrogate-Assisted Multi-Objective Optimization for Handling Objectives with Heterogeneous Evaluation Times: Unconstrained Problems Balija Santoshkumar and Kalyanmoy Deb (Michigan State University, USA) ### 15:20 A Surrogate-Assisted Coevolutionary Algorithm for Expensive Constrained Multiobjective Optimization Haofeng Wu, Qingda Chen, Cuie Yang and Jinliang Ding (Northeastern University, China); Yaochu Jin (Westlake University, China) #### 15:40 A Hybrid CMA-ES Method with Convex Hull Surrogate Model Wenwen Liu, Shiu Yin Yuen and Chi Wan Sung (City University of Hong Kong, China) 14:20 – 16:40 Poster Session Conference: IJCNN+CEC **Room:** 501+502 Session Chair(s): Thomas Trappenberg and Hongyu Lin #### 59: Predictive control of a multi-energy building-integrated microgrid: a case study Romain Mannini (University Perpignan via Domitia, France); Julien Eynard (University of Perpignan, France); Stéphane Grieu (University Perpignan via Domitia, France) **60: Nonlinear model-based predictive control of electric water heaters in individual dwellings** Laguili Oumaima (University of Perpignan & PROMES Laboratory, France); Julien Eynard (University of Perpignan, France); Stéphane Grieu (University Perpignan via Domitia, France) ### **61:** Multiobjective Optimization Problems in Switching Power Converters with Photovoltaic Inputs Ryunosuke Numata (HOSEI University, Japan); Toshimichi Saito (Hosei University, Japan) ### **62:** The Constrained Niching Differential Evolution Algorithm for Satellite Layout Optimization Design Zhongneng Zhang (National University of Defense Technology, China); Xianqi Chen (Chinese Academy of Military Science, China); Yufeng Xia (National University of Defense Technology, China); Wen Yao (Chinese Academy of Military Science, China); Weien Zhou (Chinese Academy of Military Sciences, China); Yu Li (Chinese Academy of Military Science, China); Bingxiao Du (National University of Defense Technology, China) ### **63:** Multi-Agent Collaborative Search with Adaptive Heuristics and Weight Vectors for Aerospace Multi-objective Optimal Control Problems Li Cao (China University of Geosciences (Wuhan) & University of Strathclyde, UK (Great Britain)); Maocai Wang (China University of Geosciences, China); Ben Parsonage and Christie Maddock (University of Strathclyde, UK (Great Britain)); Guangming Dai (China University of Geosciences, China) ### **64:** An Evolutionary Algorithm with Feasibility Tracking Strategy for Constrained Multi-objective Optimization Problems Lei Yang, Jinglin Tian, Jiale Cao, Kangshun Li and Chaoda Peng (South China Agricultural University, China) #### 65: A Scalable High-Dimensional Constrained Multiobjective Benchmark Kangjia Qiao, Jing Liang, Kunjie Yu, Caitong Yue, Hongyu Lin and Dezheng Zhang (Zhengzhou University, China); Boyang Qu (Zhongyuan University of Technology, China) ### **66: Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis** Hao Hao and Xiaoqun Zhang (Shanghai Jiao Tong University, China); Aimin Zhou (East China Normal University, China) ### 67: Reference Vector Guided Variables Selection for Expensive Large-scale Multiobjective Optimization Jianqing Lin, Cheng He, Xueming Liu and Linqiang Pan (Huazhong University of Science and Technology, China) #### **68:** Balancing Convergence and Diversity in Meta-heuristics for Calibration of Instrument Transformers Zihan Gao, Cheng He, Chuanji Zhang and Hongbin Li (Huazhong University of Science and Technology, China) **69: A Surrogate-Assisted Clustering-Based Evolutionary Algorithm for Expensive Optimization** Chunlong Hai, Jiazhen Wang and Liquan Mei (Xi'an Jiaotong University, China) 70: NSMD-NAS: Retinal Image Segmentation with Neural Architecture Search and Non-Subsampled Multiscale Decomposition Hanyu Zhang, Lixin Tang, Xiangman Song and Te Xu (Northeastern University, China) 16:20 - 16:40 Break 16:40 - 18:00 CEC WE3-R10: SS on CI for Music, Art, and Creativity Conference: CEC Room:414+415 **Session Chair(s):** Arya Kumar Bhattacharya #### 16:40 Emotion Aligned Music Composition from Sound Fundamentals using Differential Evolution Prafulla Kalapatapu, Ishaan Chigilli Palli, Ravi Teja Gangavarapu, Arya Kumar Bhattacharya and Nartkannai K (Mahindra University, India) #### 17:00 A Language-free Evolutionary Framework for Text-to-image Generation Ming-You Ying (National Yang Ming Chiao Tung University, Taiwan); Rung-Tzuo Liaw (Fu Jen Catholic University, Taiwan) #### 17:20 SCAPE: Searching Conceptual Architecture Prompts using Evolution Soo Ling Lim (University College London (UCL), UK (Great Britain)); Peter J Bentley (University College London (UCL) and Autodesk Research, UK (Great Britain)); Fuyuki Ishikawa (National Institute of Informatics, Japan) ### 17:40 Revisiting the Formation of Harmonic Progressions from the Perspective of Voice-Leading with Evolutionary Computation Chun-yien Chang and Ying-ping Chen (National Yang Ming Chiao Tung University, Taiwan) 16:40 - 18:00 CEC WE3-R11: SS on CI with Human Factors Conference: CEC Room:416+417 Session Chair(s): Tadashi Onishi #### 16:40 Preference-Based Evolutionary Multi-Objective Optimization Using Non-Preference Information Tadashi Onishi and Mamoru Doi (Mitsubishi Electric Corporation, Japan) #### 17:00 A Method for Revealing Implicit Emphasized Criteria for Decision Makers on Social Issues Toshio Ito, Shizuko Matsuzoe, Tadashi Iwahashi, Hisatoshi Yamaoka and Miwa Ueki (Fujitsu Limited, Japan); Kota Nagakane, Hideaki Morozumi, Koki Ikeda and Isao Ono (Tokyo Institute of Technology, Japan) ### 17:20 Computational Study of Dream Interpretations: Psychoanalytic Human vs Artificial Analyses Mayte H Laureano and Hiram Calvo (Instituto Politécnico Nacional, Mexico) ### 17:40 Model Editing-based Feedback for Interactive Machine Learning in Surrogative Digital Twin Nurfadhlina Mohd Sharef and Anahita Ghazvini (Universiti Putra Malaysia, Malaysia) 16:40 - 18:00 CEC WE3-R12: J2C Paper Presentation III Conference: CEC Room:418 Session Chair(s): Zhi-Hui Zhan #### 16:40 Evolutionary GAN Compression for Image Translation Yao Zhou and Zhang Yi (Sichuan University, China); Gary G Yen (Oklahoma State University, USA) **17:00 Learning Plus Evolution for Optimization Towards A New Artificial Intelligence Approach** Zhi-Hui Zhan and Jian-Yu Li (Nankai University, China); Sam Kwong (City University of Hong Kong, Hong Kong); Jun Zhang (SUN Yat-sen University, China) ### 17:20 Evolutionary multi-objective design of autoencoders for compact representation of pathology images Shahryar Rahnamayan (Brock University, Canada) 16:40 - 18:00 **CEC Competition Session 2** **Room:**419 18:30 - 21:30 WCCI 2024 Banquet Room: Pacifico Yokohama North #### July 4, 2024 8:30 - 10:10 **IEEE WCCI2024 Young Professionals Session** Room: 211+212 8:30 - 10:10 Workshop: Privacy- Preserving and Fairness-Aware Optimization **Room:** 213 8:30 - 10:10 CEC TH1-R10: SS on EC for Electric Vehicle Routing and Charging Conference: CEC Room: 414+415 Session Chair(s): Yahui Jia **8:30** A Bilevel Hybrid Genetic Algorithm for Capacitated Electric Vehicle Routing Problem Chang-Tao Feng and Yahui Jia (South China University of Technology, China); Qiang Yang (Nanjing University of Information Science and Technology, China); Wei-Neng Chen and Huaiguang Jiang (South China University of Technology, China) #### 8:50 Improved methods for solving the electric vehicle charging scheduling problem to maximize the delive Abdennour Azerine (Université de Haute-Alsace & IRIMAS, Mulhouse, France); Ammar Oulamara (LORIA Laboratory Universite de Lorraine, France); Michel Basset (University of Haute Alsace, France); Lhassane Idoumghar (University of Haute Alsace & IRIMAS Institute, France) ### 9:10 A Confidence-based Bilevel Memetic Algorithm with Adaptive Selection Scheme for Capacitated Electric Vehicle Routing Problem Yinghao Qin and Jun Chen (Queen Mary University of London, UK (Great Britain)) ### **9:30** Evolution-Assisted Deep Reinforcement Learning for Fast Charging Station Coordinated Operation Xiaoying Yang (University of Nottingham Ningbo China, China); Yujing Gu (State Grid Nantong Power Supply Company, China); Fuhua Jia and Yiran Li (University of Nottingham Ningbo China, China); Hongru Wang (Southeast University, China); Nanjiang Du and Tianxiang Cui (University of Nottingham Ningbo China, China); Yujian Ye (Southeast University, China); Ruibin Bai (University of Nottingham Ningbo, China) #### 9:50 Adaptive NEH with constrained Nearest Neighbor subtours for the Electric Vehicle Routing Problem with Time Windows Donald D Davendra and Andrew Struthers (Central Washington University, USA) 8:30 - 10:10 CEC TH1-R11: SS on Artificial Life Conference: CEC Room: 416+417 **Session Chair(s):** Hiroki Sayama **8:30 Non-Spatial Hash Chemistry as a Minimalistic Open-Ended Evolutionary System** Hiroki Sayama (Binghamton University, USA) #### 8:50 Exploration of reservoir properties in molecular computing systems Nathanael Aubert-Kato (Ochanomizu University, Japan); Mika Ito (Nikkei Inc., Japan) #### 9:10 Automating Robot Design with Multi-Level Evolution Geoff Nitschke and Bilal Aslan (University of Cape Town, South Africa) ### 9:30 An Open-Ended Approach to Understanding Local, Emergent Conservation Laws in Biological Evolution Alyssa M Adams (Cross Labs & Cross Compass, Algorithmic Nature Lab, Japan); Eliott Jacopin (RIKEN, Japan); Praful Gagrani (University of Wisconsin-Madison, USA); Olaf Witkowski (University of Tokyo, Japan) **9:50** Evolution of developmental plasticity of soft virtual creatures in changing environments Ryusnouke Higashinaka, Reiji Suzuki and Takaya Arita (Nagoya University, Japan) 8:30 - 10:10 **CEC TH1-R12:** SS on Evolutionary Optimization on Digital Economy Applications Conference: CEC Room: 418 Session Chair(s): Lingjie Li #### 8:30 Many Objectives Autonomous Robot Path Planning with Improved MOEA/D Jin Zhou (University of Nottingham, China); David Chieng (University of Nottingham Ningbo China, China); Boon Giin Lee (University of Nottingham Ningbo China & Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, China); Junkai Ji and Jianqiang Li (Shenzhen University, China) #### 8:50 Deep Reinforcement Learning for Solving the Vehicle Routing Problem in Practical Logistics Junchuang Cai, Xinzhi Zhang and Qiuzhen Lin (Shenzhen University, China); Lisha Dong (Shenzhen Institute of Information Technology, China); Wei-Neng Chen (South China University of Technology, China); Zhong Ming (Shenzhen University, China) #### 9:10 Generative Evolution Attacks Portfolio Selection Chen Li, Zidong Han, Jinrong Jiang, Lian Zhao, Yidi Bai and ZhongHua Lu (Computer Network Information Center, Chinese Academy of Sciences, China); Xuebin Chi (Computer Network Information Center, Chinese Academy of Sciences) ### 9:30 A cooperative co-evolution algorithm with variable-importance grouping for large-scale optimization Yongfeng Li, Yuze Zhang, Lijia Ma and Junkai Ji (Shenzhen University, China); Dugang Liu (Guangdong Laboratory of Artificial Intelligence and Digital Economy, China); Victor C.M. Leung (Shenzhen University, China & The University of British Columbia, Canada); Jianqiang Li (Shenzhen University, China) ### 9:50 A Surrogate-assisted Evolutionary Algorithm for Expensive Dynamic Multimodal Optimzation Xunfeng Wu, Songbai Liu, Junkai Ji and Lijia Ma (Shenzhen University, China); Victor C.M. Leung (Shenzhen University, China & The University of British Columbia, Canada) 8:30 - 10:10 **CEC TH1-R13:** SS on Evolutionary Computer Vision and Image Processing Conference: CEC Room: 419 **Session Chair(s):** Ying Bi ### **8:30** A Two-stage Approach Using Genetic Algorithm and Genetic Programming for Remote Sensing Crop Classification Jing Liang, Zexuan Yang, Tuo Zhang and Ying Bi (Zhengzhou University, China) ### 8:50 QRPatch: A Deceptive Texture-based Black-box Adversarial Attacks with Genetic Algorithm Chao Li (Xidian University, China); Wen Yao (Chinese Academy of Military Science, China); Handing Wang (Xidian University, China); Tingsong Jiang (Chinese Academy of Military Science, China); Donghua Wang (Zhejiang University, China); Jialiang Sun (Chinese Academy of Military Science, China) #### • ### 9:10 Exploring Genetic Programming Models in Computer-Aided Diagnosis of Skin Cancer Images Qurrat UI Ain, Harith Al-Sahaf and Bing Xue (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) #### 9:30 Black-Box Optimization Based Adaptive Image Anonymization Arcadi Llanza (University Paris Est Créteil, France); Nadiya Shvai (Cyclope.ai & National University of Kyiv-Mohyla Academy, France); Amir Nakib (University of Paris-Est Créteil, France) #### 9:50 ESC: Evolutionary Stitched Camera Calibration in the Wild Grzegorz Rypeść (Warsaw University of Technology & Sports Algorithmics and Gaming, Poland); Grzegorz Kurzejamski (Sport Algorithmics and Gaming Sp. z o. o., Poland) 8:20 – 18:40 Exhibition **Room:** 501+502 10:10 - 10:30 **Break** 10:30 - 11:30 WCCI 2024 Plenary talk by Akira Oyama Room: 301+302+303+304 **Session Chair(s):** Hisao Ishibuchi #### Multiobjective evolutionary optimization in space engineering and spin-off to industry Akira Oyama Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency Multiobjective evolutionary computation (MOEC) is getting popular in Japan because it has various advantages such as capability of finding wide variety of Pareto-optimal designs. In Japan Aerospace Exploration Agency (JAXA), I have been engaged in multiobjective design optimizations in space engineering such as rocket engine turbopump design, spacecraft trajectory design, reusable space transportation system design, spacecraft landing system design, selection of Moon landing site. In this talk, I will introduce some examples of these applications of MOEC in JAXA. Then, I will introduce spinoff of the multiobjective design optimization technology to industry. Here, I will present the collaboration work with Mazda, Kobe University, and Hiroshima University for aerodynamic car shape design and the collaboration work with Central Japan Railway Company for aerodynamic and aeroacoustics design of superconducting maglev. Finally, I will discuss current issues in using MOEC for real-world design problems and our recent approaches to overcome these issues. 11:30 – 13:00 **Lunch Time** 13:00 - 14:00 **Keynote talk by Yukie Nagai** Conference: IJCNN Room: 301+302 Session Chair(s): Huajin Tang #### **Predictive Processing: Illuminating and Modeling Cognitive Development** Yukie Nagai University of Tokyo Cognitive development is an intricate and multifaceted process that has captivated researchers for decades. Human abilities related to perception and action continually evolve during development, exhibiting remarkable diversity among individuals. This presentation explores the concept of predictive processing as a promising unified theory for illuminating and modeling cognitive development. Rooted in neuroscience, predictive processing offers a unique perspective for understanding how the brain constructs its perception of the world. The core idea posits that the brain continually generates internal models to predict the world and refines them in response to sensory input to minimize prediction errors. This dynamic process underlies the acquisition of cognitive abilities, from self-recognition to goal-directed actions, and even fosters the emergence of social behaviors like imitation and altruism, facilitated through multimodal predictions. Moreover, this presentation sheds light on how disruptions in predictive processing lead to individual diversities, including developmental disorders. By emphasizing the concept of predictive processing and showcasing its practical application in robotic experiments, we aim to demonstrate its potential as a unifying framework for cognitive development. This presentation opens doors to exciting opportunities for creating more adaptive and intelligent systems. 13:00 - 14:00 Keynote talk by Jialin Liu Conference: CEC Room: 303+304 Session Chair(s): Carlos A. Coello Coello #### Designing and playing games with computational intelligence Jialin Liu Southern University of Science and Technology (SUSTech) Games provide an ideal playground for AI researchers to study, explore, evaluate, and experiment with different ideas in a controllable and safe environment. As an important application and product, games also involve complex decision-making and creative design tasks. Games have played important roles in the development of computational intelligence, while different computational intelligence methods have been widely applied to playing and designing games. In this talk, I will show how different computational intelligence methods (e.g., generative models, reinforcement learning and evolutionary computation) could be harnessed to procedurally generate new game contents, from game levels to accompanying music that correlates with game difficulties. In addition, I will also show how novel computational intelligence techniques, especially evolutionary reinforcement learning, could be used to play a range of different games. I will conclude the talk by discussing current challenges and potential research directions. July 4, 2024 13:00 - 14:00 **Keynote Talk by Jim Torresen** Conference: FUZZ-IEEE **Room:** 503 **Session Chair(s):** Keeley Crockett #### AI Ethics - Challenges and Opportunities Jim Tørresen University of Oslo Artificial intelligence (AI) has entered an increasing number of different domains. A growing number of people – in the general public as well as in research – have started to consider a number of potential ethical challenges and legal issues related to the development and use of AI technologies. This keynote will give an overview of the most commonly expressed ethical challenges and ways being undertaken to reduce their negative impact. Among the most important challenges are those related to privacy, fairness, transparency, safety and security. Countermeasures can be taken first at design time, second, when a user should decide where and when to apply a system and third, when a system is in use in its environment. In the latter case, there will be a need for the system by itself to perform some ethical reasoning if operating in an autonomous mode. This keynote will introduce some examples from our own and others' work and how the challenges can be addressed both from a technical and human side with special attention to problems relevant when working with AI research and development. AI ethical issues should not be seen only as challenges but also as new research opportunities contributing to more sustainable, socially beneficial services and systems. 14:00 - 14:20 **Break** 14:20 - 18:40 Workshop: Workshop on Multimodal Optimization for Machine Learning **Room:** 211+212 14:20 - 16:20 Workshop: Privacy-Preserving and Fairness-Aware Optimization **Room:** 213 CEC TH2-R10: SS on EC and CI for Scheduling and Combinatorial Optimization I Conference: CEC Room: 414+415 **Session Chair(s):** Yi Mei ### 14:20 Learning Heuristics via Genetic Programming for Multi-mode Resource-constrained Project Scheduling Yuan Tian and Yi Mei (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) ### 14:40 Constructing ensembles of automatically designed relocation rules for the container relocation problem Marko Đurasević (University of Zagreb, Croatia); Mateja Đumić (J. J. Strossmayer University Osijek, Croatia); Francisco Javier Gil-Gala (University of Oviedo, Spain) ### 15:00 On the Effects of Smoothing Rugged Landscape by Different Toy Problems: A Case Study on UBQP Wei Wang (Xi'an Jiaotong University, China); Jialong Shi (Xi'an Jiaotong University, China & Sichuan Digital Economy Industry Development Research Institute, China); Jianyong Sun (Xi'an Jiaotong University, China); Arnaud Liefooghe (University of the Littoral Opal Coast, France); Qingfu Zhang (City University of Hong Kong, Mexico); Ye Fan (Northwestern Polytechnical University, China) **15:20 ACSLs** for large-scale bounded single depot multiple travelling salesman problem Shanu Verma and Millie Pant (Indian Institute of Technology Roorkee, India) #### 15:40 Large-scale Project Portfolio Selection and Scheduling Problem: A Comparison of Exact Solvers and Metaheuristics Jing Liu and Saber Elsayed (University of New South Wales, Australia); Daryl Essam (University of New South Wales at the Australian Defence Force Academy UNSW@ADFA, Australia); Ruhul Sarker (University of New South Wales, Australia); Ivan Garanovich and Terence Weir (Defence Science and Technology Organisation, Australia) 16:00 Prediction of Distributed Ultrasound Simulation Execution Time Using Machine Learning Jiri Jaros, Marta Jaros and Martin Buchta (Brno University of Technology, Czech Republic) **CEC TH2-R11:** SS on Evolutionary Algorithms for Neural Architecture Search from Theory to Practice Conference: CEC Room: 416+417 Session Chair(s): Jesús Guillermo Falcón-Cardona ### 14:20 A novel surrogate model for variable-length encoding and its application in optimising deep learning architecture Truong Dang (National Subsea Centre, UK (Great Britain)); Tien Thanh Nguyen and John McCall (Robert Gordon University, UK (Great Britain)); Kate Han (Unviersity of Salford, UK (Great Britain)); Alan Wee-Chung Liew (Griffith University, Australia) #### 14:40 Image segmentation enhanced by heuristic assistance for retinal vessels case Katarzyna Prokop and Dawid Polap (Silesian University of Technology, Poland) #### 15:00 A Lightweight Training-Free Method for Neural Architecture Search Jhih-Cian Lin (National Sun Yat-Sen University, Taiwan); Chun-Wei Tsai (National Sun Yat-sen University, Taiwan) # **15:20 Chaotic Map-Coded Evolutionary Algorithms for Dendritic Neuron Model Optimization** Haichuan Yang (Tokushima University, Japan); Yifei Yang (Hirosaki University, Japan); Yuxin Zhang (Wesoft Company Ltd., Japan); Cheng Tang (Kyushu University, Japan); Koichi Hashimoto (Tohoku University, Japan); Yuichi Nagata (Tokushima University, Japan) **15:40 Towards evolution of Deep Neural Networks through contrastive Self-Supervised learning** Adriano Vinhas (University of Coimbra, Portugal); João Correia (University of Coimbra CISUC LASI, Portugal); Penousal Machado (University of Coimbra, Portugal) **16:00** NeuroLGP-SM: Scalable Surrogate-Assisted Neuroevolution for Deep Neural Networks Fergal Stapleton and Edgar Galvan (Maynooth University, Ireland) 14:20 - 16:20 **CEC TH2-R12:** Uncertain and Dynamic Environments Conference: CEC Room: 418 **Session Chair(s):** Marde Helbig and Michalis Mavrovouniotis ### 14:20 Dynamic Multi-Task Interactive Evolutionary Optimization Algorithm with Search Space Alignment WeiDong Wu, Xiaoyan Sun and Yong Zhang (China University of Mining and Technology, China); Wei Song (Jiangnan University, China) ### 14:40 Multi-Object Tracking as Continuous Dynamic Environment and its Exploration by Particle Swarm Optimization Ryo Takano (Toyama Prefectural University, Japan) ### 15:00 Generate a Single Heuristic for Multiple Dynamic Flexible Job Shop Scheduling Tasks by Genetic Programming Jiayin Chen and Yahui Jia (South China University of Technology, China); Ying Bi (Zhengzhou University, China); Wei-Neng Chen (South China University of Technology, China) **15:20 Exchange Strategies for Multi-Colony Ant Algorithms in Dynamic Environments** Michalis Mavrovouniotis (Eratosthenes Centre of Excellence & Cyprus University of Technology, Cyprus); Changhe Li (Anhui University of Sciences & Technology, China); Danial Yazdani (University of Technology Sydney, Australia); Diofantos Hadjimitsis (Cyprus University of Technology, Cyprus) ### 15:40 Dynamic NSGA-III with KRR-ANOVA Kernel Predictor for In-Motion Sonar Image Segmentation Aakansha Agarwal and Satyasai Jagannath Nanda (Malaviya National Institute of Technology Jaipur, India) ### 16:00 Dynamic Multi-objective Optimisation Problems with Changes of Varying Frequency and Severity Marde Helbig (Griffith University, Australia) 14:20 - 16:20 CEC TH2-R13: SS on CI in Space and Aerospace I Conference: CEC Room: 419 **Session Chair(s):** Victor Rodriguez **14:20** Robust Classification with Belief Functions and Deep Learning Applied to STM Luis Sanchez (University of Strathclyde, UK (Great Britain)); Victor Rodriguez (UPM, Spain); Massimiliano Vasile (University of Strathclyde, UK (Great Britain)) #### **14:40** Satellite Collision Avoidance Maneuver Planning in Low Earth Orbit using Proximal Policy Optimization Sajjad Kazemi, Nasser L Azad and Katharine Andrea Scott (University of Waterloo, Canada); Haroon B. Oqab and George B. Dietrich (Columbiad Launch Services Inc., Canada) ### 15:00 Deep Learning based Nonlinear Dimensionality Reduction for Emulators of Numerical Thermosphere Densi Richard Licata and Piyush M Mehta (West Virginia University, USA) #### 15:20 Clustering of Earth-Moon transfers in Sun-perturbed environment Claudio Toquinho Campana and Francesco Topputo (Politecnico di Milano, Italy) **15:40 Path Planning in a dynamic environment using Spherical Particle Swarm Optimization** Mohssen Elshaar (King Fahd University of Petroleum and Minerals & KFUPM - Aerosapce Engineering, Saudi Arabia); Mohammed Reda Elbalshy (King Fahd University of Petroleum and Minerals, Saudi Arabia); Mohammad A. Abido and Alaa El-Din Hussein (KFUPM, Saudi Arabia) #### 16:00 A Learning Classifier System Approach to Time-Critical Decision-Making in Dynamic Alternate Airport Selection Boris Djartov (FL-SEG BS - Systemergonomie, Germany); Sanaz Mostaghim (Otto von Guericke University Magdeburg, Germany); Anne Papenfuss (German Aerospace Center, Germany); Matthias Wies (German Aerospace Center (DLR), Germany) 14:20 – 16:40 Poster Session Conference: CEC Room: 501+502 **Session Chair(s):** Zeng-Guang Hou and Caitong Yue ### 61: Multipopulation evolutionary algorithm via seed transfer for multitasking traveling salesman problem Haoyuan Lv, Ruochen Liu and Handing Wang (Xidian University, China) ### **62: Improved Discrete Fireworks Algorithm for Large Scale Knapsack Problem** Yifan Liu and Ying Tan (Peking University, China) ## **63: Multimodal Multi-objective Flexible Job Shop Scheduling: A preliminary study**Caitong Yue, Liming Liu, Jing Liang, Gongping Li, Ying Bi and Mingyuan Yu (Zhengzhou University, China) **64:** A Historical Evolution Learning based Framework for Dynamic Multiobjective Optimization Dezheng Zhang, Kunjie Yu and Jing Liang (Zhengzhou University, China); Boyang Qu (Zhongyuan University of Technology, China); Caitong Yue (Zhengzhou University, China); Ling Wang (Tsinghua University, China); Ke Chen (Zhengzhou University & School of Electrical and Information Engineering, China); Mengnan Liu (YTO Group Corporation, China) ### 65: A Cooperative Coevolutionary Approach to Designing Acceptance Tests for Jobs With Weakly Hard Real-Time Constraints Karla Salamun and Hrvoje Džapo (University of Zagreb, Croatia) #### 66: Reliability-aware Network Slicing based on Multi-objective Optimization Qiqi Xia (Southern University of Science and Technology, China); Jin Wang (Huawei Technologies Co. Ltd, China); Chengqiang Huang (Huawei, China); Xin Yao (Southern University of Science and Technology, China) ## **67:** Multi-objective Optimization for Joint Communication and Computing Resource Allocation in NOMA-based MEC System Hongzhe Wang and Lixin Tang (Northeastern University, China); Min Xiao (Xinyu Iron and Steel Co Ltd, China); Qingxin Guo (Northeastern University, China) ## **68:** Evolutionary Dynamic Optimization-Based Calibration Framework for Agent-Based Financial Market Simulators Zhenhua Yang, Muyao Zhong and Peng Yang (Southern University of Science and Technology, China) #### 69: Schizophrenia Detection using EEG: A Study on Frequency Relevance Luís Alexandre (University of Beira Interior, Portugal); Wlodzislaw Duch (Nicolaus Copernicus University, Poland) #### 70: Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification Liang Qu (The University of Queensland, Australia); Cunze Wang (Fujian Medical University, China); Yuhui Shi (Southern University of Science and Technology, China) #### 71: NMT vs MLM: Which is the best paradigm for APR? Chen YiHeng (Xidian University, China); Kai Huang (University of Chinese Academy of Sciences, China); He Wang and Zhang Yu qing (Xidian University, China) ## 72: Evolving Continuous Filter Convolutional Network Based on a Novel Multi-Objective Optimization Algorithm for Molecular Property Prediction Yaguo Dong, Meiling Xu and Lixin Tang (Northeastern University, China) 16:20 - 16:40 Break 16:40 - 18:40 CEC TH3-R10: SS on EC and CI for Scheduling and Combinatorial Optimization II Conference: CEC Room: 414+415 **Session Chair(s):** Fangfang Zhang ## 16:40 Multi-Objective Genetic-Programming Hyper-Heuristic for Evolving Interpretable Flexible Job Shop Scheduling Rules Junwei Pang and Yi Mei (Victoria University of Wellington, New Zealand); Mengjie Zhang (VUW, New Zealand) # 17:00 Crossover Operators Between Multiple Scheduling Heuristics with Genetic Programming for Dynamic Flexible Job Shop Scheduling Luyao Zhu (Zhengzhou University, China); Fangfang Zhang (Victoria University of Wellington, New Zealand); Mengyuan Feng (China); Ke Chen (Zhengzhou University & School of Electrical and Information Engineering, China); Xiaodong Zhu (Zhengzhou University, China); Mengjie Zhang (VUW, New Zealand) ### 17:20 Designing Relocation Rules with Genetic Programming for the Online Container Relocation Problem Marko Đurasević (University of Zagreb, Croatia); Mateja Đumić (J. J. Strossmayer University Osijek, Croatia); Francisco Javier Gil-Gala (University of Oviedo, Spain) #### 17:40 The Vehicle Routing Problem with Drones and Flexibility Demands Hue Thi Tran (Banking Academy of Vietnam & Hanoi University of Science and Technology, Vietnam); Nguyen Ngoc Bao, Nguyen Tran Nhat Quoc, Pham Phu Manh, Nguyen Khanh Phuong, Huynh Thi Thanh Binh and Dang Quang Thang (Hanoi University of Science and Technology, Vietnam) ## **18:00** A Deep Reinforcement Learning Assisted Heuristic for Solving Traveling Salesman Problems Ye Tian, Qinghui Zhu, Shuai Shao, Langchun Si and Xingyi Zhang (Anhui University, China) ### 18:20 An Interior-point Genetic Algorithm with Restarts for Flexible Job Shop Scheduling Problems David Hutter (University of Applied Sciences Vorarlberg, Austria); Michael Hellwig and Thomas Steinberger (Vorarlberg University of Applied Sciences, Austria) 16:40 - 18:40 **CEC TH3-R11:** SS on Evolutionary Multi-Objective Machine Learning Conference: CEC Room: 416+417 Session Chair(s): ### 16:40 Recombination Operators for the Multi-objective Team Formation Problem in Social Networks Julio Antonio Juárez (Tecnologico de Monterrey, Mexico); Carlos Brizuela (CICESE RESEARCH CENTER, Mexico); Hugo Terashima-Marín (Tecnologico de Monterrey, Mexico); Carlos Coello Coello (Cinvestav, Mexico) ### 17:00 Multiobjective Optimization with Mating Restriction via Wasserstein Generative Adversarial Networks Honglei Cheng and Gai-Ge Wang (Ocean University of China, China); Ying Tian (College of Information Technology, China) ### 17:20 Enhanced Soil Property Estimations from Earth Observation Data with Differential Evolution-based Mul Nikolaos L. Tsakiridis, Nikiforos Samarinas, Eleni Kalopesa, John Theocharis and George C Zalidis (Aristotle University of Thessaloniki, Greece) 17:40 Opposition-based Multi-objective ADAM Optimizer (OMAdam) for Training ANNs Farzaneh Nikbakhtsarvestani (University of Ontario Institute of Technology, Canada); Shahryar Rahnamayan (Brock University, Canada); Mehran Ebrahimi (University of Ontario Institute of Technology, Canada) ## 18:00 A Multiobjective Particle Swarm Optimizer based Localized Feature Selection for Imbalanced Fault Diagnosis Lin Gao, Yu Zhou and Hainan Guo (Shenzhen University, China); Sam Tak Wu Kwong (Lingnan University, Hong Kong) 16:40 - 18:40 **CEC TH3-R12:** SS on Numerical Optimization Conference: CEC Room: 418 Session Chair(s): Ponnuthurai Nagaratnam Suganthan #### 16:40 Performance of Beta Mutation on CEC 2017 and CEC 2022 Benchmarks Yogesh Kumar and Kusum Deep (Indian Institute of Technology Roorkee, India) **17:00** Confidence Bands Based on Rating Demonstrated on the CEC 2021 Competition Results Miha Ravber and Marjan Mernik (University of Maribor, Slovenia); Shih-Hsi Liu (California State University, USA); Marko Šmid and Matej Črepinšek (University of Maribor, Slovenia) ## 17:20 Differential Evolution with Success Rate-based adaptation CL-SRDE for Constrained Optimization Vladimir Stanovov and Eugene Semenkin (Siberian State Aerospace University, Russia) #### 17:40 A modified EACOP implementation for Real-Parameter Single Objective Optimization Problems Andrea Tangherloni (Bocconi University, Italy); Vasco Coelho (University of Milano-Bicocca, Italy); Francesca M. Buffa (Bocconi University, Italy); Paolo Cazzaniga (University of Bergamo, Italy) **18:00** Random and Chaotic Sequences, and the Effect of their Distributions on PSO Performance Hendrik Richter and Paul M Nörenberg (HTWK Leipzig University of Applied Sciences, Germany) **18:20 Success Rate-based Adaptive Differential Evolution L-SRTDE for CEC 2024 Competition** Vladimir Stanovov and Eugene Semenkin (Siberian State Aerospace University, Russia) 16:40 - 18:40 CEC TH3-R13: SS on CI in Space and Aerospace II Conference: CEC Room: 419 Session Chair(s): Josy John **16:40** Multi-Objective Optimisation strategy for On-Orbit Fault-Tolerant Decision Making Robert Cowlishaw, Ashwin Arulselvan and Annalisa Riccardi (University of Strathclyde, UK (Great Britain)) ## 17:00 FlexKalmanNet: A Modular Al-Enhanced Kalman Filter Framework Applied to Spacecraft Motion Estimation Moritz Duarte Pinheiro-Torres Vogt, Markus Huwald, Mohamed Khalil Ben-Larbi and Enrico Stoll (TU Berlin, Germany) # 17:20 Neural Network-based Synchronisation of Free-Floating Space Manipulator's Joint Motion and Mother Spacecraft's Attitude for Active Debris Removal Shabadini Sampath and Jinglang Feng (University of Strathclyde, UK (Great Britain)) # 17:40 A Neural Network Symbolic Approach to Structural Health Monitoring in Aerospace Applications Federica Angeletti, Federico Succetti and Massimo Panella (University of Rome "La Sapienza", Italy); Antonello Rosato (Universita di Roma "La Sapienza", Italy) # **18:00** Precise and Efficient Orbit Prediction in LEO with Machine Learning using Exogenous Variables Francisco M. Caldas (NOVA University, Portugal); Cláudia Soares (NOVA University of Lisbon, Portugal) #### 18:20 Genetic Algorithm-based Routing and Scheduling for Wildfire Suppression using a Team of UAVs Josy John and V Sundaram Suresh (Indian Institute of Science, India) #### July 5, 2024 8:30 - 10:10 CEC FR1-R10: SS on Automating CI Systems: Trends, Challenges, and Future Directions I Conference: CEC Room: 414+415 Session Chair(s): Nelishia Pillay ### 8:30 Beyond `Novel' Metaphor-based Metaheuristics: An Interactive Algorithm Design Software Diego Acosta-Ugalde, Jorge Mario Cruz-Duarte, Santiago Enrique Conant-Pablos and Jesús Guillermo Falcón-Cardona (Tecnologico de Monterrey, Mexico) #### 8:50 Impact of Scaling in ELA Feature Calculation on Algorithm Selection Cross-Benchmark Transferability Gjorgjina Cenikj and Gašper Petelin (Jožef Stefan Institute & Jožef Stefan International Postgraduate School, Slovenia); Tome Eftimov (Jožef Stefan Institute, Slovenia) ## **9:10** Tailoring Metaheuristics for Designing Thermodynamic-Optimal Cooling Devices for Microelectronic Thermal Management Applications Guillermo Perez-Espinosa, Jorge Mario Cruz-Duarte, Ivan Amaya, Jose Carlos Ortiz-Bayliss and Hugo Terashima-Marín (Tecnologico de Monterrey, Mexico); Nelishia Pillay (University of Pretoria, South Africa) #### 9:30 Dynamic Function Generation for Text Classification Mia Gerber (University of Pretoria, South Africa); Nelishia Pillay (University of Pretoria, USA) #### 9:50 Dynamic Algorithm Composition for Image Segmentation Mia Gerber (University of Pretoria, South Africa); Nelishia Pillay (University of Pretoria, USA) 8:30 - 10:10 **CEC FR1-R11:** Intelligent Network Systems and Cyber Security Conference: CEC Room: 416+417 Session Chair(s): Antonio M. Mora **8:30 Two-level Software Obfuscation with Cooperative Co-evolutionary Algorithms** José Miguel Aragón-Jurado, Javier Jareño, Juan Carlos de la Torre and Patricia Ruiz (University of Cádiz, Spain); Bernabe Dorronsoro (Universidad de Cádiz, Spain) #### 8:50 Differential Evolution Algorithm for Battlefield Surveillance Sensor Placement Ehab Elfeky (University of New South Wales, Australia); Gregory D Sherman (DST Edinburgh, Australia); Saber Elsayed (University of New South Wales, Australia); Md Hedayetul Islam Shovon and Riley Lodge (DST Edinbrugh, Australia); Benjamin Campbell (Defence Science and Technology Group, Australia); Daryl Essam and Ruhul Sarker (University of New South Wales, Australia) **9:10** Applying Evolutionary Algorithms for Service Function Chaining in 5G Networks Antonio M. Mora, Javier Victoria Mohammed and Nuria Medina Medina (University of Granada, Spain); Juan Valenzuela-Valdés (Universidad de Granada, Spain) **9:30** Application of a Bi-objective EA for RAN Resources Optimization in a Dynamic Scenario Markus Rothkoetter (Otto-Von-Guericke University Magdeburg, Germany); Niklas Kluge (Otto Von Guericke University Magdeburg, Germany); Sanaz Mostaghim (Otto von Guericke University Magdeburg, Germany) 8:30 - 10:10 CEC FR1-R12: Late Breaking I Conference: CEC Room: 418 Session Chair(s): Raul de Celis ## **8:30** Generalized Carrier Phase Ambiguity Resolution for Precise Attitude Estimation Using Neural Networks and GNSS Sensors Raul de Celis (Aerospace Systems and Transport Research Group, Spain) ## **8:50** Hyper-Heuristics for a Two-Echelon Location-Routing Problem with Different Intermediate Facilities Rebecca M Hamm (Lancaster University (Lancaster), UK (Great Britain)); Ahmed Kheiri and Burak Boyaci (Lancaster University, UK (Great Britain)) # **9:10** Advanced Transformer-Based Model for Phishing Attack Detection using Tokenization and Fine-Tuning Rachana Potpelwar (Shri Guru Gobind Singhji Institute of Engineering and Technolog, India) ## 9:30 Computational Intelligence for Automatically Labeling Human Somatosensory Types and Decoding Human Somatosensory Sensitivity Li-Wei Ko, Congying He, Cheng-Hua Su, Hao-Yuan Lin and Li-Ling Hope Pan (National Yang Ming Chiao Tung University, Taiwan); Shuu-Jiun Wang (Taipei Veterans General Hospital, Taiwan) 8:30 - 10:10 CEC FR1-R13: Late Breaking II Conference: CEC Room: 419 Session Chair(s): ## **8:30** Towards Generalization of Multi-Objective Optimization for Flux Balance Analysis Problems in Genome Scale Metabolic Models Carlos Felipe Coello Castillo (UAM Cuajimalpa, Mexico); Carlos Coello Coello (Cinvestav, Mexico) #### 8:50 A Multi-Objective Evolutionary Learning Method for Bearing Fault Diagnosis Dan Wang (Northeastern University & National Frontiers Science Center for Industrial Intelligence and Systems Optimization, China); Chang Liu and Lixin Tang (Northeastern University, China) ## **9:10** Realising chiller plant optimisation via Artificial Neural Networks and hybrid Genetic Algorithm and Particle Swarm Optimisation Algorithm Kam Chun Lam (Electrical and Mechanical Services Department, HKSAR, Hong Kong); Wai Leuk Chiu and Wing Hung Lam (Electrical and Mechanical Services Department, Hong Kong); Wing Kwan Yu (Electrical and Mechanical Services Department, Hong Kong Special Administrative Region Government, Hong Kong); Tsz Yan Ip (Electrical and Mechanical Services Department, Hong Kong) ## 9:30 Evolutionary Multi-Objective Optimization and Pareto Solution Trade-Off Strategy for Edge Computing Task Offloading Yingying Sun (Northeastern University, China) 8:20 - 17:00 Exhibition Room: 501+502 10:10 - 10:30 **Break** 10:30 - 11:30 WCCI 2024 Plenary talk by Saori Tanaka Room: 301+302+303+304 Session Chair(s): Kazushi Ikeda #### Utilization of large-scale brain image database for digitalization of psychiatric and neurological disorders Saori Tanaka NAIST, ATR In recent years, neuroimaging databases for psychiatric and neurological disorders have enabled users to find common and disease-specific features and redefine disease spectra using data-driven approaches. In the Brain/MINDs beyond (2018-2023), the neuroimaging database projects have established the multiple sites, multiple disorders MRI database. A remarkable feature of this database is the traveling-subjects dataset; each participant was scanned at each multisite. This led to the development of a harmonization method to reduce site differences and the development of a generalizable diagnostic marker with brain networks of major depressive disorder (Yamashita, et al., 2020). This database has expanded to 14 disorders and over 16 sites, and over 5,000 MRI data will be collected by the end of the project. This will be the largest MRI database of multiple neurological and psychiatric disorders from multiple sites. In addition, this database includes longitudinal patient data, allowing for the evaluation of treatment effects. This database is expected to lead to the stratification and the development of new treatment methods. Here, as a potential use of the database, I will suggest an integration with approaches based on the computational theory of the brain in addition to data-driven approaches. Computational neuroscience studies understanding the brain mathematically focused on the neural mechanisms of information processing. In recent years, these approaches have been applied to understanding psychiatric disorders. I will show some previous studies using large-scale behavioral data and computational models of psychiatric disorders and demonstrate possibilities of fusion with computational models and neuro-behavioral databases. 11:30 – 13:00 Lunch Time 13:00 - 14:00 Keynote talk by Divyashree-Shivakumar Sreepathihalli Conference: IJCNN Room: 301+302 Session Chair(s): Seiichi Ozawa #### Keras, A shortcut to master Al Divyashree-Shivakumar Sreepathihalli Google Discover the transformative capabilities of the Keras 3 API. Delve into deep learning best practices, where you'll gain insights into crafting uncomplicated models and executing them with your preferred backend—be it PyTorch, TensorFlow, or JAX. Explore the dynamic potentials of KerasNLP and KerasCV modules, unveiling the art of constructing powerful AI applications. Witness the seamless creation of generative image and language models, empowering you to achieve remarkable feats with just a few lines of code. 13:00 - 14:00 **Keynote talk by Tobias Rodemann** Conference: CEC Room: 303+304 **Session Chair(s):** Bing Xue #### Trust in Optimization Algorithms – The End User Perspective Tobias Rodemann Honda Research Institute Europe Evolutionary Algorithms have a potentially wide-spread usage. They can deal with various types of design parameters, constraints and objectives; non-linear, discontinuous, noisy fitness landscapes and many, even conflicting objectives can be handled. There are numerous open-source software packages for quickly applying EA methods on various problems. In practice, however, EAs are not used as frequently as we would hope. In this talk I would like to provide some insights from industrial projects and focus especially on the perspective of the end user. I will argue that hot topics in ML like trust, transparency and explainability, also need to be considered in Computational Intelligence. 13:00 - 14:00 **Keynote Talk by Gabriella Pasi** Conference: FUZZ-IEEE **Room:** 503 Session Chair(s): Annabel Latham #### Large Language models: contextual knowledge matter Gabriella Pasi University of Milano Bicocca The last few years have witnessed an increasing development of generative AI and its applications, which culminated in the large-scale sharing of ChatGPT on the Web, with its related potentials, risks and limitations. Large Language Models are one of the possible technologies at the basis of generative AI; they are nowadays successfully applied to a variety of NLP tasks, among which are machine translation, conversational agents, and several others. Despite this, LLMs are affected by some limitations, among which a lack in accounting for contextual knowledge related to the task at hand. A research trend is to inject such knowledge (in-context) into LLMs via prompting techniques. A more recent and promising research direction is to make use of neuro-symbolic approaches, to better model and control the process. In this talk, after a short introduction to LLMs, I will present some possible approaches finalized to this latter aim. I will also present the research issue of defining personal language models, i.e. LLMs tailored on the language of specific users or groups of users. 14:00 - 14:20 Break CEC FR2-R10: SS on Automating CI Systems: Trends, Challenges, and Future Directions II Conference: CEC Room: 414+415 **Session Chair(s):** Jorge Mario Cruz-Duarte **14:20** Neural Combinatorial Optimization by means of Partial Solution Strategies Andoni Irazusta Garmendia (University of the Basque Country, Canada); Josu Ceberio (UPV/EHU, Spain); Alexander Mendiburu (University of the Basque Country, Spain) ## **14:40** Beyond Traditional Tuning: Unveiling Metaheuristic Operator Trends in PID Control Tuning for Automatic Voltage Regulation Daniel Fernando Zambrano-Gutierrez, Jorge Mario Cruz-Duarte, Jose Carlos Ortiz-Bayliss and Ivan Amaya (Tecnologico de Monterrey, Mexico); Gabriel Aviña-Cervantes (Universidad de Guanajuato, Mexico) ### 15:00 An Experimental Analysis on Automated Machine Learning for Software Defect Prediction Márcio Basgalupp (Universidade Federal de São Paulo, Brazil); Rodrigo C Barros (PUCRS, Brazil & Teia Labs, Brazil); Tiago Silva (Universidade Federal de São Paulo, Brazil); Fábio Silveira (Federal University of Sao Paulo, Brazil); Péricles Miranda (Universidade Federal Rural de Pernambuco, Brazil); Ferrante Neri (University of Surrey, UK (Great Britain)) ## 15:20 Evolving Benchmark Functions to Compare Evolutionary Algorithms via Genetic Programming Yifan He (Zhejiang University of Finance and Economics, China); Claus Aranha (University of Tsukuba, Japan) ## 15:40 Generalization Ability of Feature-based Performance Prediction Models: A Statistical Analysis across Benchmarks Ana Nikolikj and Ana Kostovska (Jožef Stefan Institute, Slovenia); Gjorgjina Cenikj (Jožef Stefan Institute & Jožef Stefan International Postgraduate School, Slovenia); Carola Doerr (Sorbonne University, France); Tome Eftimov (Jožef Stefan Institute, Slovenia) CEC FR2-R11: SS on Games Conference: CEC Room: 416+417 Session Chair(s): Zehua Jiang **14:20** Improving Generalization in Game Agents with Data Augmentation in Imitation Learning Derek Yadgaroff (Uppsala University, Sweden); Alessandro Sestini and Konrad Tollmar (SEED - Electronic Arts, Sweden); Ayca Ozcelikkale (Uppsala University, Sweden); Linus Gisslen (SEED - Electronic Arts, Sweden) **14:40 GEEvo: Game Economy Generation and Balancing with Evolutionary Algorithms** Florian Rupp and Kai Eckert (University of Applied Sciences Mannheim, Germany) 15:00 Amorphous Fortress: Exploring Emergent Behavior and Complexity in Multi-Agent 0-Player Games M Charity and Sam Earle (New York University, USA); Dipika Rajesh (Independent Researcher, India); Mayu Wilson (Independent Researcher, USA); Julian Togelius (NYU, USA) 15:20 Capitalizing on the Opponent's Uncertainty in Reconnaissance Blind Chess Jacek Czupyt, Mikołaj Małkiński and Jacek Mańdziuk (Warsaw University of Technology, Poland) 15:40 Extended Generative Adversarial Imitation Learning for Autonomous Agents in Minecraft Game Hyung-Jun Moon (University of Computing & Yonsei University, Korea (South)); Sung-Bae Cho (Yonsei University, Korea (South)) **16:00 Fuzzy Utility AI for Handling Uncertainty in Video Game Bots Implementation** Maciej Swiechowski (QED Games & Information Technologies for Psychiatry Foundation, Poland) CEC FR2-R12: SS on Machine Learning assisted Heuristics for Combinatorial Optimization Conference: CEC Room: 418 Session Chair(s): Xiangyu Wang ## 14:20 A Graph Neural Network Assisted Evolutionary Algorithm for Expensive Multi-objective Optimization Xiangyu Wang and Xilu Wang (Bielefeld University, Germany); Yaochu Jin (Westlake University, China); Ulrich Rückert (Bielefeld University, Germany) ## 14:40 Cluster-centric Local Search Strategies for Enhanced Multi-Objective Logistics Optimization Wei Liu, Thomas Bäck and Yingjie Fan (Leiden University, The Netherlands) ## 15:00 Learning-based Problem Reduction for Large-scale Uncapacitated Facility Location Problems Shuaixiang Zhang, Yixuan Yang, Hao Tong and Xin Yao (Southern University of Science and Technology, China) ## 15:20 Surrogate-Assisted Evolutionary Computation for Distributed Simulation-Based Inventory Optimization in Serial Supply Chains Ziang Liu and Tatsushi Nishi (Okayama University, Japan) **15:40** Efficient Hyperparameter Optimization Using Deep Q-Network and BRKGA Kosei Kobayashi and Masayoshi Aritsugi (Kumamoto University, Japan); Pedro Henrique González (Federal University of Rio de Janeiro, Brazil); Israel Mendonca (Kumamoto University, Japan) **16:00 ACO** with Reinforcement Learning applied to Rescues Operations on Urban Forests Claudio Andre da Silva Alves (Federal University of Rio de Janeiro, Brazil); Israel Mendonca (Kumamoto University, Japan); Vanessa de Almeida Guimaraes and Pedro Henrique González (Federal University of Rio de Janeiro, Brazil) **CEC FR2-R13:** Machine Learning for Evolutionary Computation Conference: CEC Room: 419 **Session Chair(s):** Vojtech Uher ### 14:20 Fitness Landscape k-Nearest Neighbors Classification Based on Fitness Values Distribution Vojtech Uher and Pavel Kromer (VSB - Technical University of Ostrava, Czech Republic) **14:40 A Data-Driven Optimization Method for Strongly Non-Separable Mixed-Integer Problems**Takahiro Sato (Muroran Institute of Technology, Japan) ## **15:00 A Reinforcement Learning Method Based on Natural Evolution Strategies** Koki Kimura and Isao Ono (Tokyo Institute of Technology, Japan) # 15:20 VISTA: A Variable Length Genetic Algorithm and LSTM-Based Surrogate Assisted Ensemble Selection algorithm in Multiple Layers Ensemble System Kate Han (Unviersity of Salford, UK (Great Britain)); Truong Thanh Nguyen and Viet Anh Vu (School of ICT, Vietnam); Alan Wee-Chung Liew (Griffith University, Australia); Truong Dang and Tien Thanh Nguyen (National Subsea Centre, Robert Gordon University) #### 15:40 Exploring Self-Adaptive Genetic Algorithms to Combine Compact Sets of Rules Michael Heider, Maximilian Krischan, Roman Sraj and Jörg Hähner (University of Augsburg, Germany) ## **16:00** Legal Text Retrieval with Contrastive Representation Learning and Evolutionary Data Augmentation Youhua Zhou (South China University of Technology, China); Xueming Yan (Guangdong University of Foreign Studies, China); Han Huang, Haowen Yan and Minghao Chen (South China University of Technology, China) 14:20 – 16:40 Poster Session Conference: IJCNN+CEC Room: 501+502 **Session Chair(s):** Seiichi Ozawa and Bing Xue **61: A Triple Network Knowledge Learning Framework for Particle Swarm Optimization** Zhao Zhang, Lingda Wang and Chen Chen (Beijing Institute of Technology, China) **62: Evolutionary Multitasking Collaborative Neural Architecture Search for Scene Classification**Shanfeng Wang, Zaitian Liu, Jianzhao Li, Maoguo Gong and Rui Yang (Xidian University, China) **63:** Finding Sets of Pareto Sets in Real-World Scenarios - A Multitask Multiobjective Perspective Jiao Liu (Nanyang Technological University & College of Computing & Data Science, Singapore); Yew Soon Ong (School of Computer Engineering, Nanyang Technological University, Singapore); Melvin Wong (Nanyang Technological University, Singapore) 64: Multi-Stage Transfer Learning Evolutionary Algorithm for Dynamic Multiobjective Optimization Qianhui Wang, Qingling Zhu and Junkai Ji (Shenzhen University, China) 65: Multiobjective Sequential Transfer Optimization: Benchmark Problems and Preliminary Results Xiaoming Xue (City University of Hong Kong, Hong Kong); Liang Feng (Chongqing University, China); Cuie Yang (Northeastern University, China); Songbai Liu (Shenzhen University, China); Linqi Song (City University of Hong Kong, Hong Kong); Kay Chen Tan (The Hong Kong Polytechnic University, Hong Kong) 66: Language Evolution for Evading Social Media Regulation via LLM-based Multi-agent Simulation Jinyu Cai and Jialong Li (Waseda University, Japan); Mingyue Zhang (Southwest University, China); Munan Li (Dalian Maritime University, China); Chen-Shu Wang (National Taipei University of Technology, Taiwan); Kenji Tei (Waseda University / National Institute of Informatics, Japan) **67: Reinforcement Learning with Safe Action Generation for Autonomous Racing** Jiacheng Yang, Yuanda Wang, Lu Dong and Xin Yuan (Southeast University, China) **68: FOG: A Unified Framework for Federated Combinatorial Optimization on Graphs**Shiqing Liu and Ulrich Rückert (Bielefeld University, Germany); Yaochu Jin (Westlake University, China) **69: Expensive optimization based on evolutionary multi-tasking and hybrid restart strategy** Zhenyuan Li, Xiao-Liang Ma, Zexuan Zhu and Yueyue Li (Shenzhen University, China) 70: Multi-Objective Finite-Frequency H-infinity/GH-2 Static Output Feedback Control for Input-Delayed Active Suspension System of In-Wheel Motor-Driven Electric Full-Vehicle Suhwan Choi, Yeongjae Kim and Tae-Hyoung Kim (Chung-Ang University, Korea (South)) ## 71: A Novel Subspace Construction Method for Large-scale Evolutionary Multi-objective Optimization Wenping Wang, Yang Zhang and Shuwei Zhu (Jiangnan University, China); Meiji Cui (Nanjing University of Science and Technology, China) #### 72: A Two-stage Evolutionary Framework For Multi-objective Optimization Peng Chen, Jing Liang and Kangjia Qiao (Zhengzhou University, China); Ponnuthurai Nagaratnam Suganthan (Qatar University, Qatar); Xuanxuan Ban (Zhengzhou University, China) 16:20 – 16:40 Break **18:10 – 18:40 Closing Ceremony Room:** 301+302 18:40 – 20:00 Farewell Party Room: 303+304 #### **Author Index** | Abido, Mohammad 19 Bakurov, Illya 129 Acampora, Giovanni 19, 146 Ban, Xuanxuan 198 Acosta Mesa, Héctor Gabriel 164 Banzhaf, Wolfgang 140 Acosta-Ugalde, Diego 19, 187 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barradas-Palmeros, Jesús-Arnulfo 164 Aguilar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Baseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bachikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 119, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emillo 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Almasseriyil Viswambaran, Ramya 151 Bi, Ing. 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Arita, Takaya 19, 172 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Aranha, Claus 119, 131, 132, 141, 195 Aratis, Bilal 172 Aubert-Kato, Nathanael 173 Bay (Lui, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Bay, Junpeng 152 Campana, Claulo Toquinho 181 Baba, Takayuki 155 Campos-Peña, Diego 126 Bai, Quan 193 Bai, Ruibin 19, 133, 149, 151, 171 Gai, Vidi 191 Carneiro, Murillo 20 | Abe, Takumi 127 | Bai, Yuan | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------| | Acampora, Giovanni 19, 146 Ban, Xuanxuan 198 Acosta Mesa, Héctor Gabriel 164 Banzhaf, Wolfgang 140 Acosta-Ugalde, Diego 19, 187 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barmpas, Petros 147 Agarwal, Aakansha 180 Barradas-Palmeros, Jesús-Arnulfo 164 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Aldrich, Chris 133 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Berkerleg, Mark 153 Alexandre, Luís 19, 182 Bentley, Peter 19 Alexandre, Luís 19, 183 Bernofr, Alistair 19, 124 Allmohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Alramiran, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 | • | | | Acosta Mesa, Héctor Gabriel 164 Banzhaf, Wolfgang 140 Acosta-Ugalde, Diego 19, 187 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barmpas, Petros 147 Agarwal, Aakansha 180 Barradas-Palmeros, Jesús-Arnulfo 164 Aguilar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alexandre, Luís 19, 182 Bentley, Peter 19 Allexandre, Luís 19, 182 Bentley, Peter 19 Allmeida, Rui Jorge 19, 118 Bernal-Zubieta, Emilio 19, 149 Almeida, Rui Jorge 19, 149 Beyer, Hans-Georg 19, 89, 19, 19 Altamirano, Leopoldo 19, 149, 19, 189 Beyer, Hans-Georg 19, 89, 19, 19 </td <td></td> <td>•</td> | | • | | Acosta-Ugalde, Diego 19, 187 Barba-Toscano, Oscar 127 Adamidis, Panagiotis 19, 148 Barmpas, Petros 147 Agarwal, Aakansha 180 Barradas-Palmeros, Jesús-Arnulfo 164 Aguilar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Agirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 All-Sahaf, Harith 173 Bermal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernal-Zubieta, Emilio 19, 134 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Amaya, Ivan <td>•</td> <td>•</td> | • | • | | Adamidis, Panagiotis 19, 148 Barmpas, Petros 147 Agarwal, Aakansha 180 Barradas-Palmeros, Jesús-Arnulfo 164 Aguilrar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Alexandre, Luís 19, 182 Bentley, Peter 19 Allexandre, Luís 19, 182 Bentley, Peter 19 Alexandre, Luís 19, 183 Bernejo, Enrique 133 Allendia, Rui Jorge 19, 118 Bernai-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernai-Zubieta, Emilio 19, 134 Altamirano, Leopoldo | | , 3 | | Agarwal, Aakansha. 180 Barradas-Palmeros, Jesús-Arnulfo 164 Aguilar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Bentley, Peter 19, 126 Almeida, Rui Jorge 19, 182 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Berma-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Berma-Zubieta, Emilio 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Arasserijil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 </td <td></td> <td></td> | | | | Aguilar, Jose 19, 120 Basgalupp, Márcio 19, 193 Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Argon-Jurado, José Miguel 188 Borisova, Julia 20, 119 < | <del>-</del> | • | | Aguirre, Hernan 126, 142, 152 Basset, Michel 171 Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bernejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Argeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 <td></td> <td></td> | | | | Aguirre, Nahum 127 Basseur, Matthieu 142 Ahmed, Bestoun 19 Batista, Joao 19 Alba, Errique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bernejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 | _ | 9 117 | | Ahmed, Bestoun | | | | Alba, Enrique 163 Bechikh, Slim 19, 157 Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernal-Zubieta, Emilio 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 146 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Aritugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 188 Aritugi, Masayoshi 19, 131, | _ | • | | Aldrich, Chris 133 Beckerleg, Mark 153 Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almohaimeed, Saleh 19, 131 Bernejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 134 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Bih, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Aritugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Aritugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Aslan, Bilal 172 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 | | • | | Alemán, Inmaculada 133 Benford, Alistair 19, 126 Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 153 Aria, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Ariugla, Ashwin 185 Brahmi, Zaki 141 Aslan, Bilal 172 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchanan, | • | • | | Alexandre, Luís 19, 182 Bentley, Peter 19 Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Ariugla Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nat | | <u> </u> | | Almeida, Rui Jorge 19, 131 Bermejo, Enrique 133 Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Bin, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Junchuang 173 Awai, Kazuo 155 | | | | Almohaimeed, Saleh 19, 118 Bernal-Zubieta, Emilio 19, 134 Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 < | · | • • | | Al-Sahaf, Harith 173 Bernardino, Heder 19, 136 Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aviña-Cervantes, Gabriel 193 Cai, Jinyu 197 Avai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Baba, Takayuki 155 Cam | | • | | Altamirano, Leopoldo 19, 149 Beyer, Hans-Georg 19, 89, 119, 142 Amaya, Ivan 19, 187, 193 Bhattacharya, Arya 20 Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranguren, Itzel 126 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, | · | | | Amaya, Ivan | | | | Anasseriyil Viswambaran, Ramya 151 Bi, Ying 7, 17, 20, 64, 173, 180, 181 Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranguren, Itzel 126 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campos-Peña, Diego | · | _ | | Angeletti, Federica 185 Binh, Huynh Thi Thanh 127, 183 Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranguren, Itzel 126 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Baba, Takayuki 155 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 < | • • | • • • | | Aragón-Jurado, José Miguel 188 Borisova, Julia 20, 119 Aranguren, Itzel 126 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Baba, Takayuki 155 Campana, Claudio Toquinho 181 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 <td></td> <td></td> | | | | Aranguren, Itzel 126 Borrett, Fraser 153 Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | | | Aranha, Claus 119, 141, 193 Bostelmann-Arp, Lukas 132 Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | • | | Arita, Takaya 19, 172 Boyaci, Burak 188 Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki 141 Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | • | | Aritsugi, Masayoshi 19, 131, 132, 141, 195 Brahmi, Zaki | | • • | | Arulselvan, Ashwin 185 Brizuela, Carlos 184 Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | • | | Asilian Bidgoli, Azam 19, 155, 156 Buchanan, Edgar 20, 132, 141 Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | Brahmi, Zaki141 | | Aslan, Bilal 172 Buchta, Martin 178 Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Arulselvan, Ashwin185 | • | | Aubert-Kato, Nathanael 172 Cai, Jinyu 197 Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Asilian Bidgoli, Azam 19, 155, 156 | Buchanan, Edgar 20, 132, 141 | | Aviña-Cervantes, Gabriel 193 Cai, Junchuang 173 Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | | Buchta, Martin 178 | | Awai, Kazuo 155 Calvo, Hiram 20, 169 Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Aubert-Kato, Nathanael172 | Cai, Jinyu 197 | | Azerine, Abdennour 171 Camacho-Vallejo, José-Fernando 157 Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Aviña-Cervantes, Gabriel193 | Cai, Junchuang 173 | | Ba, Yunpeng 152 Campana, Claudio Toquinho 181 Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Awai, Kazuo155 | Calvo, Hiram | | Baba, Takayuki 155 Campbell, Benjamin 188 Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Azerine, Abdennour171 | Camacho-Vallejo, José-Fernando 157 | | Bäck, Thomas 104, 195 Campos-Peña, Diego 126 Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Ba, Yunpeng 152 | Campana, Claudio Toquinho 181 | | Bai, Quan 139 Cao, Jiale 167 Bai, Ruibin 19, 133, 149, 151, 171 Cao, Li 20, 167 | Baba, Takayuki155 | Campbell, Benjamin 188 | | Bai, Ruibin | Bäck, Thomas 104, 195 | Campos-Peña, Diego126 | | | Bai, Quan139 | Cao, Jiale 167 | | Bai, Yidi | Bai, Ruibin 19, 133, 149, 151, 171 | Cao, Li | | | Bai, Yidi173 | Carneiro, Murillo20 | | Casas-Ordaz, Angel 126 | Coello Coello, Carlos 7, 72, 140, 148, 157, | |-------------------------------------|----------------------------------------------| | Castelli, Mauro129 | 184, 189 | | Cazzaniga, Paolo185 | Colligan, Andrew21 | | Ceberio, Josu 193 | Cordon, Oscar 7, 16, 21, 124, 127, 133 | | Cenikj, Gjorgjina165, 187, 193 | Corrêa, Ulisses21 | | Cerveira, Arthur | Correia, João 179 | | Chang, Chi-Hsien129 | Couvin, David140 | | Chang, Ching-Ray 146 | Cowlishaw, Robert 185 | | Chang, Chun-yien169 | Črepinšek, Matej 185 | | Chang, Ming-Ho146 | Cuevas, Erik | | Charity, M194 | Cui, Meiji 198 | | Chen, Caishun 149 | Cui, Tianxiang 171 | | Chen, Chen197 | Cully, Antoine151 | | Chen, Cheng 20, 139 | Cussat-Blanc, Sylvain140 | | Chen, Chunhua164 | Czupyt, Jacek194 | | Chen, Dong 20, 138 | da Silva, José Eduardo21 | | Chen, Gang151 | Dai, Guangming167 | | Chen, Jiayin 180 | Dang, Truong 21, 179, 196 | | Chen, Jun171 | de Carvalho, Patrick 136 | | Chen, Ke 20, 181, 183 | de Celis, Raul188 | | Chen, Lei 133, 150 | de la Cruz, Marina138 | | Chen, Longcan20, 159 | de la Torre, Juan Carlos188 | | Chen, Minghao196 | de Nobel, Jacob104 | | Chen, Peng 20, 21, 198 | Deb, Kalyanmoy 7, 72, 94, 97, 138, 152, 158, | | Chen, Qi 20, 90, 103, 120, 129, 155 | 166 | | Chen, Qingda166 | Deep, Kusum 142, 184 | | Chen, Renzhi165 | Defryn, Christof131 | | Chen, Weimin131 | Della Cioppa, Antonio 21, 147 | | Chen, Wei-Neng171, 173, 180 | Demir, Kaan 117 | | Chen, Xianqi167 | DeSouza, Guilherme21 | | Chen, Xinan 133 | Dey, Dhananjoy132 | | Chen, Ying-ping 20, 169 | Dey, Prianka 156 | | Chen, Yi-Ruei119 | Diao, Zhenya149 | | Cheng, Honglei184 | Díaz Hernández, Raquel149 | | Cheung, Yiu-ming70, 150 | Ding, Chenwen | | Chi, Xuebin 173 | Ding, Hangqi139 | | Chiang, Tu-Chin129 | Ding, Jinliang 21, 166 | | Chieng, David172 | Djartov, Boris181 | | Chiu, Hon Wing Billy158 | Dobrosolski, Jan 139 | | Chiu, Wai Leuk189 | Dobrovsky, Ladislav120 | | Cho, Sung-Bae 194 | Doerr, Carola21, 104, 127, 193 | | Choi, Suhwan 198 | Doi, Mamoru 169 | | Chou, Yao-Hsin146 | Doncel, Josu120 | | Coelho, Vasco | Dong, Huachao153 | | Dong, Lisha1 | 73 | Fukase, Takafumi | 141 | |------------------------------------|-----|------------------------------------------|------| | Dong, Lu 1 | | Fukuyama, Yoshikazu | | | Dong, Minhui21, 1 | .55 | Gagrani, Praful | 172 | | Dong, Yaguo1 | 82 | Galvan, Edgar | 179 | | Dorronsoro, Bernabe 1 | 88 | Gálvez, Akemi | 117 | | Drechsler, Rolf1 | 35 | Gamez, Jose | 131 | | Du, Bingxiao1 | 67 | Gao, Lin | 184 | | Du, Nanjiang1 | 71 | Gao, Yuan | 153 | | Duan, Xuan1 | 55 | Gao, Zihan | 168 | | Dube, Michael1 | 47 | Garanovich, Ivan | 178 | | Dubey, Rahul22, 132, 1 | 41 | Garcia-Junior, Marcelo | 156 | | Duch, Wlodzislaw1 | 82 | Garnica, Oscar116, | 138 | | Đumić, Mateja178, 1 | 83 | Georgakopoulos, Spiros 147, 149, | 150 | | Đurasević, Marko 22, 178, 1 | 83 | Gerber, Mia | 187 | | Džapo, Hrvoje1 | 81 | Ghasemi, Zahra | 133 | | Earle, Sam1 | 94 | Ghazvini, Anahita | 170 | | Ebrahimi, Mehran 1 | 84 | Gil-Gala, Francisco Javier 23, 178, | 183 | | Ebrahimi, Sevda1 | 55 | Giráldez-Cru, Jesús | 127 | | Eckert, Kai1 | 94 | Gisslen, Linus | 194 | | Eftimov, Tome 22, 127, 165, 187, 1 | 93 | Gong, Cheng | 130 | | Ehrgott, Mathias1 | 58 | Gong, Maoguo 139, 153, | 197 | | Elarbi, Maha1 | 57 | González, Pedro Henrique 23, 131, 132, 1 | 141, | | Elfeky, Ehab1 | 88 | 195 | | | Elsayed, Saber 22, 158, 178, 1 | .88 | Gopalakrishnan, Saisubramaniam | 140 | | Elshaar, Mohssen 1 | 81 | Graether, Steffen | 147 | | Engelbrecht, Andries | 99 | Grieu, Stéphane 23, | 167 | | Espinilla Estevez, Macarena1 | 47 | Gu, Haoran 23, | 134 | | Essam, Daryl158, 178, 1 | .88 | Gu, Yujing | 171 | | Eynard, Julien1 | 67 | Guha, Ritam | 138 | | Fan, Fan1 | 46 | Günther, Matthias | 135 | | Fan, Ye1 | 78 | Guo, Hainan | 184 | | Fan, Yingjie1 | 95 | Guo, Qingxin | 182 | | Fan, Zhun1 | 38 | Guoyuan, Zhou | 119 | | Fatyanosa, Tirana Noor1 | 32 | Gupta, Abhishek | 110 | | Feng, Chang-Tao1 | 71 | Hadjimitsis, Diofantos | 180 | | Feng, Dan1 | 53 | Hähner, Jörg | 196 | | Feng, Jinglang1 | 85 | Hai, Chunlong | 168 | | Feng, Liang 22, 110, 153, 1 | 97 | Hamza, Noha | 158 | | Feng, Mengyuan1 | 83 | Han, Kate179, | 196 | | Feng, Xue1 | 35 | Han, Zhongyang | 117 | | Feng, Yinglan 1 | 53 | Han, Zidong | 173 | | Fernández Anta, Antonio 1 | 20 | Hanawa, Yuki | 159 | | Filus, Katarzyna 1 | 19 | Hao, Hao23, | 168 | | Friel, Imelda 132, 1 | 41 | Hao, Lupeng | 135 | | | | | | | Harada, Tomohiro | 18, 159, 163 | Ibarra-Vazquez, Gerardo | 24, 148 | |--------------------------|--------------|---------------------------|---------------------| | Hartmann, Michael | , , | Idoumghar, Lhassane | | | Hashimoto, Koichi | | Iglesias, Andres | | | Hasome, Yu | | Ikeda, Koki | | | Haut, Nathaniel | | Ikeguchi, Takashi | | | He, Cheng | | Ingimundardottir, Helga | 127 | | He, Chengwei | | Inokuchi, Yuto | | | He, Congying | | Ip, Tsz Yan | | | He, Linjun | | Irazusta Garmendia, Ando | | | He, Yifan | | Irurita, Javier | | | Heider, Michael | 23, 196 | Ishibuchi, Hisao7, 15, 72 | , 95, 96, 120, 130, | | Helbig, Marde | 23, 179, 180 | 134, 159, 174 | | | Hellwig, Michael | | Ishihara, Masaki | 155 | | Hewa Pathiranage, Ishara | | Ishikawa, Fuyuki | 24, 169 | | Heywood, Malcolm | | Ishizawa, Ryuki | 129 | | Hickinbotham, Simon | | Ishizuka, Tomoki | 121 | | Hidalgo, J. Ignacio | | Islam, Saiful | | | Higaki, Toru | | Ito, Mika | 172 | | Higashinaka, Ryusnouke | 172 | Ito, Toshio | 169 | | Hiroyasu, Tomoyuki | | Iwahashi, Tadashi | 169 | | Hiwa, Satoru | | Jacopin, Eliott | 172 | | Hömberg, Tomoya | | Jalaleddin Mousavirad, Se | | | Honda, Katsuhiro | | Jareño, Javier | =' | | Hong, Huaping | | Jaros, Jiri | | | Hong, Wenjing | | Jaros, Marta | 178 | | Horaguchi, Yuma | | Ji, Jingyu | 24, 126, 158 | | Hou, Yaqing | 24, 153 | Ji, Junkai | 155, 172, 173, 197 | | Houghten, Sheridan | | Jia, Fuhua | 171 | | Hsu, Tzu-Hao | 129 | Jia, Yahui | 171, 180 | | Hu, Ran | 117 | Jiang, Huaiguang | 171 | | Hua, Cheng-Yen | 146 | Jiang, Jing | | | Huang, Chengqiang | 182 | Jiang, Jinrong | | | Huang, Han | | Jiang, Jun | | | Huang, Kai | | Jiang, Tingsong | | | Huang, Min | 120 | Jiang, Yu-Chi | | | Huang, Pei-Qiu | | Jin, Chenwei | | | Huang, Pei-Shin | 146 | Jin, Yaochu7, 12, 17, 64, | 72, 133, 143, 144, | | Huber, Jörn | 135 | 156, 160, 166, 195, 197 | | | Hulka, Tomas | | John, Josy | 185, 186 | | Hussein, Alaa El-Din | 181 | Jones, Karen | 132 | | Hutter, David | | Juárez, Julio | | | Huwald, Markus | | Juricek, Martin | | | lannaccone, Antonio | | K, Nartkannai | | | Iba, Hitoshi 17 | | Kailai, Gao | | | | • | | | | Kalapatapu, Prafulla | 24, 169 | Leite, Rui | 126 | |-------------------------|--------------------|--------------------------------------------|-------| | Kalopesa, Eleni | 184 | Lensen, Andrew | 25 | | Karageorgos, John | 133 | Li, Changhe | 180 | | Karasudani, Ayu | 155 | Li, Chao25 | , 173 | | Kato, Takuya | 128 | Li, Chen | 173 | | Kawakami, Shio | 25, 153 | Li, Gongping | 181 | | Kazemi, Sajjad | 25, 180 | Li, GuoLiang | 119 | | Kentaro, Sakabe | 148 | Li, Hao 25, 26, 139 | , 153 | | Khan, Abhinandan | 156 | Li, Hongbin | 168 | | Kheiri, Ahmed | 25, 188 | Li, Hui26 | , 149 | | Kheiri, Farnaz | 156 | Li, Jialong | 197 | | Kim, Tae-Hyoung | 198 | Li, Jian | 117 | | Kim, Yeongjae | 198 | Li, Jianqiang172 | , 173 | | Kimoto, Norihiro | 163 | Li, Jian-Yu164 | , 170 | | Kimura, Koki | 196 | Li, Jianzhao | 197 | | Kinoshita, Takato | 142 | Li, Jing. 26, 64, 149, 159, 164, 167, 173, | 178, | | Kluge, Niklas | 188 | 181, 198 | | | Ko, Li-Wei | 189 | Li, Kangshun | 167 | | Kobayashi, Kosei | 195 | Li, Ke 26, 91, 159 | , 165 | | Kobayashi, Yuta | 119, 141 | Li, Lihua | 149 | | Koguma, Yuji | 163 | Li, Lingjie155 | , 172 | | Konstantinidis, Andreas | 157 | Li, Munan | 197 | | Kostovska, Ana | 127, 193 | Li, Weihua | 139 | | Kremer, Frederico | 139 | Li, Wenji | 138 | | Krischan, Maximilian | 196 | Li, Yiran 25 | , 171 | | Kromer, Pavel | 196 | Li, Yongfeng | 173 | | Kudela, Jakub | 120, 133, 152 | Li, Yu 26 | , 167 | | Kumar, Yogesh | 184 | Li, Yueyue | 197 | | Kunze, Tarek | 133 | Li, Yun | 138 | | Kuo, Enchun | 148 | Li, Zhenyuan | 197 | | Kuo, Shu-Yu | 146 | Liang, Jing 64, 149, 164, 167, 173, 181 | , 198 | | Kuo, Sy-Yen | 146 | Liaw, Rung-Tzuo | 169 | | Kurzejamski, Grzegorz | 174 | Licata, Richard | 180 | | Kwong, Sam | 170 | Liefooghe, Arnaud 26, 108, 130, 142 | , 178 | | Kwong, Sam Tak Wu 1 | .26, 153, 158, 184 | Liew, Alan Wee-Chung179 | , 196 | | Lagutin, Kirill | 117 | Lim, Soo Ling | 169 | | Lai, Yun-Ting | 146 | Lin, Cheng-Hao | 142 | | Lam, Kam Chun | 189 | Lin, Hao-Yuan | 189 | | Lam, Wing Hung | 189 | Lin, Hongyu149 | , 167 | | Lavinas, Yuri | 25, 140 | Lin, Jhih-Cian | 179 | | Le, Minh | 154 | Lin, Jianqing26 | , 168 | | Lee, Boon Giin | 172 | Lin, Qiuzhen155 | , 173 | | Lehre, Per Kristian | 109, 126 | Lin, Xi | 97 | | Lei, Yu | 25, 153 | Liu, Chang | 189 | | | | | | | Liu, Dugang173 | Ma, Jingjing 134, 159, 166 | |----------------------------|-----------------------------------------| | Liu, Fei | Ma, Lijia | | Liu, Hai-Lin150 | Ma, Wenping | | Liu, Ivy129 | Ma, Wenqiang | | Liu, Jialin | Ma, Xiao-Liang | | Liu, Jiao | Machado, Penousal | | Liu, Jiao | • | | , | Mackania Androw 27 | | Liu, Jing | MacKenzie, Andrew | | Liu, Junhua | Maddock, Christie | | Liu, Liming | Maeda, Shogo | | Liu, Lin | Mahouachi, Safa | | Liu, Mengnan | Makrehchi, Masoud 155, 156 | | Liu, Ruochen | Małkiński, Mikołaj | | Liu, Shengcai149 | Mallick, Chhandak150 | | Liu, Shih-Hsi185 | Mallik, Aakash 150 | | Liu, Shiqing64, 197 | Mamatjan, Yasin147 | | Liu, Shulei 26, 159 | Mańdziuk, Jacek194 | | Liu, Songbai 155, 173, 197 | Manh, Pham Phu183 | | Liu, Wei 26, 195 | Mannini, Romain167 | | Liu, Wenwen166 | Mao, Bifei158 | | Liu, Xiao-Fang165 | Maqueda, Esther116, 138 | | Liu, Xueming168 | Marcelli, Angelo147 | | Liu, Yifan181 | Marchetti, Francesco 129 | | Liu, Yilu 26, 152 | Mascarenhas, Alexandre119 | | Liu, Yongcun 26, 166 | Masuda, Naohiro148 | | Liu, Yuxin 26, 131 | Masuyama, Naoki 18, 142 | | Liu, Zaitian197 | Matousek, Radomil 120, 133, 152 | | Liu, Zhen152 | Matsuki, Tomoya128 | | Liu, Zhi 26, 154 | Matsuzoe, Shizuko169 | | Liu, Ziang 195 | Mavrovouniotis, Michalis 105, 179, 180 | | Llanza, Arcadi 174 | McCall, John | | Lodge, Riley188 | Medina, Nuria 188 | | Lozi, René | Mehrotra, Deepti 141 | | Lu, Chengyu26, 152 | Mei, Liquan | | Lu, Wang 166 | Mei, Yi 7, 18, 90, 100, 178, 183 | | Lu, Zhichao 97 | Mendiburu, Alexander | | Lu, ZhongHua 173 | Mendonca, Israel 27, 131, 132, 141, 195 | | Lueth, Christoph135 | Meng, Xiang | | Luo, Liu-Yue164 | Menzel, Stefan | | Luong, Ngoc Hoang154 | Mernik, Marjan 27, 63, 185 | | Luque, Gabriel 26, 163 | Mezura-Montes, Efrén 27, 158, 164 | | - | Miao, Qiguang | | Lv, Haoyuan | | | Lyu, Kuangda153 | Ming, Zhong | | Ma, Hongbin149 | Miranda, Péricles 27, 127, 193 | | Miura, Yukiya 159 | Onagi, Takuma 14 | |--------------------------------------------|--------------------------------------------| | Miyakawa, Minami 152 | Ong, Yew Soon 7, 49, 72, 124, 148, 149, 19 | | Miyazaki, Nobuhiro155 | O'Nils, Mattias15 | | Mizuno, Kazunori141 | Onishi, Tadashi16 | | Mochizuki, Keigo121 | Ono, Isao 158, 169, 19 | | Mohamad Anfar, Mohamad Rimas 155 | Ono, Keiko 28, 14 | | Mohd Sharef, Nurfadhlina 170 | Ono, Satoshi28, 13 | | Moon, Hyung-Jun194 | Ortiz, Hahnemann13 | | Mora, Higinio 139 | Ortiz-Bayliss, Jose Carlos 187, 19 | | Morozumi, Hideaki169 | Oulamara, Ammar17 | | Mostaghim, Sanaz 7, 12, 17, 132, 147, 150, | Oumaima, Laguili16 | | 162, 181, 188 | Ozcelikkale, Ayca19 | | Nagakane, Kota169 | Pal, Rajat15 | | Nagaratnam Suganthan, Ponnuthurai 111, | Palmeira, Lucas 15 | | 184, 198 | Pamboris, Andreas15 | | Nagata, Yuichi 179 | Pan, Anqi13 | | Nagpal, Renuka141 | Pan, Linqiang16 | | Nakamura, Yuko155 | Panella, Massimo 28, 18 | | Nakata, Masaya 27, 63, 163 | Pang, Junwei18 | | Nakib, Amir 27, 174 | Pang, Lie Meng 28, 95, 96, 120, 130, 158 | | Nan, Yang 27, 130, 134 | 159 | | Nanda, Satyasai28 | Pant, Millie17 | | Nekooei, Seyed Mohammad 28, 151 | Papakyriakou, Thalis15 | | Neri, Ferrante 16, 28, 151, 193 | Papenfuss, Anne18 | | Neshat, Mehdi 28, 133 | Parak, Roman15 | | Neumann, Aneta105, 120 | Parmar, Jiten13 | | Neumann, Frank 28, 105, 133 | Parsonage, Ben138, 16 | | Nezhadmoghaddam, Mahboubeh 134 | Paul, Mayukhi15 | | Nguyen, Su 100 | Pavlenko, Artem11 | | Nguyen, Tien28 | Pei, Yan11 | | Nikbakhtsarvestani, Farzaneh 184 | Peng, Chaoda 28, 16 | | Nikitin, Nikolay 119 | Peng, Wei 15 | | Nikolikj, Ana 127, 193 | Pérez Carabaza, Sara11 | | Nishi, Tatsushi 195 | Perez Cisneros, Marco12 | | Nishikubo, Masato 158 | Pérez de Prado, Rocío 28, 14 | | Nitschke, Geoff 28, 172 | Perez-Espinosa, Guillermo 18 | | Nojima, Yusuke 18, 142 | Petelin, Gašper165, 18 | | Notsu, Akira 28, 128 | Phuong, Nguyen Khanh18 | | Numata, Ryunosuke167 | Pillay, Nelishia 7, 15, 92, 18 | | Oka, Ayaka155 | Pindur, Adam Kotaro 29, 16 | | Okumura, Naru 130, 142 | Pinheiro-Torres Vogt, Moritz Duarte 18 | | Olhofer, Markus 126 | Plagianakos, Vassilis147, 15 | | Oliva, Diego 28, 126 | Pleszczyński, Mariusz 29, 11 | | Omeradzic, Amir 142 | Pluhacek, Michal10 | | Plump, Christina | 29, 135 | Ruiz, Patricia | 188 | |---------------------------|----------------------|-----------------------------------------|---------| | Polap, Dawid | 29, 179 | Runarsson, Thomas | 127 | | Potpelwar, Rachana | | Rupp, Florian | | | Price, Mark | | Rypeść, Grzegorz | | | Prokop, Katarzyna | | Sabino-Silva, Robinson | | | Puerta, José | | Sagastabeitia, Gontzal | | | Pujara, Dhaval | | Saha, Goutam | | | Punch, Bill | | Sai Prakash, Mukkamala Venkata | | | Pusateri, Abby | | Saini, Naveen | | | Qian, Chao | | Saito, Toshimichi 3 | 30, 167 | | Qiao, Kangjia | 29, 167, 198 | Salamun, Karla | 181 | | Qin, A. Kai | | Samarinas, Nikiforos | 184 | | Qin, Shufen | 29, 159 | Sampath, Shabadini 3 | 30, 185 | | Qin, Yinghao | 171 | Sanchez, Luis | 180 | | Qiu, Yifeng | 138 | Santoshkumar, Balija | 166 | | Qu, Boyang | 167, 181 | Sarker, Ruhul17 | 78, 188 | | Qu, Liang | 182 | Sato, Hiroyuki 18, 30, 63, 121, 129, 13 | 0, 142, | | Qu, Rong | 7, 133 | 152, 153, 163 | | | Qu, Xinghua | 149 | Sato, Kazuma | 130 | | Quoc, Nguyen Tran Nhat | 183 | Sato, Koichiro | 141 | | Rachelson, Emmanuel | 151 | Sato, Takahiro | 196 | | Rahnamayan, Shahryar | . 29, 155, 156, 170, | Sayama, Hiroki | 172 | | 184 | | Schönenberger, Lisa | 119 | | Rajesh, Dipika | 194 | Scott, Eric | 30 | | Rajwar, Kanchan | 29, 142 | Sebri, Faten | 141 | | Raponi, Elena | 104 | Segretier, Wilfried | 140 | | Rastogi, Nalin | 140 | Semenkin, Eugene | 185 | | Rathi, Sugandha | 141 | Semenov, Alexander | 116 | | Ravber, Miha | 185 | Sen, Anuvab | 150 | | Ray, Tapabrata | 29, 157, 165 | Senkerik, Roman | | | Reddy, Siddartha | 140 | Sestini, Alessandro3 | 30, 194 | | Riccardi, Annalisa | 185 | Sethom, Khaled | 157 | | Richter, Hendrik | 29, 131, 185 | Shallari, Irida | 151 | | Rios, Thiago | | Shang, Ke 30, 95, 96, 120, 13 | 34, 159 | | Ripon, Kazi Shah Nawaz | 29, 120 | Shao, Shuai 30, 134, 14 | ₹2, 183 | | Rivera-Lopez, Rafael | 29, 164 | Shen, Jiangtao 3 | 30, 153 | | Rodemann, Tobias | 7, 51, 126, 191 | Shen, Xun | 158 | | Rodriguez, Victor | 29, 180 | Shi, Hui 15 | 59, 166 | | Rodriguez-Esparza, Erick. | 126 | Shi, Jialong | 178 | | Rosato, Antonello | 185 | Shi, Jiao | 153 | | Rothkoetter, Markus | 188 | Shi, Yilei | 146 | | Rückert, Ulrich | 64, 195, 197 | Shi, Yuhui | | | Rudolph, Guenter | 130 | Shibahara, Masakazu | | | Ruhul, Sarker | 29 | Shiraishi, Hiroki | 163 | | Shu, Tianye | 30, 130, 134 | Sutradhar, Ananda155 | |---------------------|--------------|------------------------------------------| | Shui, Yuxiang | 149 | Sutradhar, Ananya 150 | | Shvai, Nadiya | 174 | Suzuki, Reiji 31, 172 | | Si, Langchun | 183 | Swiechowski, Maciej 31, 194 | | Silva, Elias | | Szymański, Julian139 | | Silva, Sara | 129, 164 | Tagawa, Yudai 152 | | Silva, Tiago | 193 | Tajima, Ayane | | Silveira, Fábio | 193 | Takadama, Keiki 121, 129, 130, 142, 152, | | Simonetti, Luidi | 131 | 153, 163 | | Singh, Hemant | 16 | Takagi, Hideyuki119 | | Sinha, Ankur | 94, 157 | Takamiya, Ryo 152 | | Šmid, Marko | 185 | Takano, Ryo31, 180 | | Soares, Cláudia | 31, 186 | Takebe, Hiroaki155 | | Song, Linqi | 150, 197 | Takei, Yu142 | | Song, Mingshuo | 154 | Tan, Kay Chen 12, 70, 72, 153, 155, 197 | | Song, Wei | 154, 179 | Tan, Yanyan31, 135 | | Song, Xiangman | 168 | Tan, Ying 181 | | Sorano, Ruslan | 120 | Tan, Zusheng126 | | Souto, Gabriel | 131 | Tanabe, Ryoji31, 159 | | Sraj, Roman | 196 | Tanaka, Kiyoshi 126, 142, 152 | | Srivastava, Anmol | 132 | Tanaka, Shoichiro130 | | Srivastava, Gautam | 31, 141 | Tang, Cheng179 | | Stanovov, Vladimir | 31, 185 | Tang, Ke139, 149 | | Stapleton, Fergal | 179 | Tang, Lixin 31, 158, 168, 182, 189 | | Stattner, Erick | 140 | Tang, Shanshan 31, 120 | | Steinberger, Thomas | 183 | Tang, Yanhui149 | | Steup, Christoph | 31, 132 | Tangherloni, Andrea185 | | Stoll, Enrico | 185 | Tari, Sara142 | | Struthers, Andrew | 172 | Tasoulis, Sotiris31 | | Su, Cheng-Hua | 189 | Taylor, Andy 132 | | Su, Yea-Huey | 148 | Tei, Kenji197 | | Su, Yu-Cheng | 119 | Templier, Paul 133, 151 | | Succetti, Federico | 185 | Terashima-Marín, Hugo 148, 184, 187 | | Sudo, Shun | 163 | Thang, Dang 31 | | Sun, Chaoli | 159, 166 | Theocharis, John 184 | | Sun, Jialiang | 173 | Tian, Jinglin167 | | Sun, Jianyong | 149, 178 | Tian, Ye 121, 142, 183 | | Sun, Xiaoyan | 179 | Tian, Ying 184 | | Sun, Yanan | 101 | Tian, Yuan178 | | Sun, Yingying | 189 | Tianrungroj, Yossathorn148 | | Sun, Yuelang | 139 | Ting, Chuan-Kang 7, 17, 70, 119 | | Sung, Chi Wan | 31, 166 | Todo, Yuki155 | | Suresh, Anirudh | 152 | Togelius, Julian194 | | Suresh, V Sundaram | 186 | Tollmar, Konrad194 | | Tong, Hao 195 | Wang, Handing7, 17, 50, 134, 144, 159, 166, | |-------------------------------|---------------------------------------------| | Tong, Xiangrong 153 | 173, 181 | | Tong, Yong Feng146 | Wang, He182 | | Topputo, Francesco181 | Wang, Hongfeng 32, 159 | | Torrijos, Pablo131 | Wang, Hongru 171 | | Tousi, Seyed Mohamad Ali 163 | Wang, Hongze 135 | | Tran, Hue31 | Wang, Hongzhe182 | | Tran, Thai Bao 154 | Wang, Huoyuan135 | | Tsai, Chun-Wei 31, 142, 179 | Wang, Jiazhen168 | | Tsakiridis, Nikolaos31 | Wang, Jin 182 | | Tyrrell, Andy 32, 132, 141 | Wang, Ling 181 | | Tyska Carvalho, Jonata127 | Wang, Lingda197 | | Tzanetos, Alexandros152 | Wang, Maocai 167 | | Ueki, Miwa 169 | Wang, Meng135 | | Uher, Vojtech 32, 196 | Wang, Peng 117, 153, 164 | | Ul Ain, Qurrat 32, 173 | Wang, Qianhui197 | | Upadhyay, Parth 32 | Wang, Shanfeng197 | | V, Varun140 | Wang, Shuu-Jiun189 | | Vaddina, Vishal140 | Wang, W 117 | | Valdivia, Arturo 126 | Wang, Wei 178 | | Valenzuela-Valdés, Juan188 | Wang, Wei-Hong142 | | van Stein, Niki 104 | Wang, Weixin121 | | Vanneschi, Leonardo129 | Wang, Wenping198 | | Vasicek, Zdenek 32, 116 | Wang, Wenxin153 | | Vasile, Massimiliano180 | Wang, Xiangyu 64, 195 | | Vásquez, Mario 127 | Wang, Xianpeng 158 | | Velasco, J. Manuel 116, 138 | Wang, Xiaodan139 | | Vennell, Ross | Wang, Xiaoli135 | | Verel, Sébastien 108 | Wang, Xilu 32, 64, 195 | | Verma, Shanu178 | Wang, Xinjing 153 | | Vermetten, Diederick 104, 127 | Wang, Yao 158 | | Viktorin, Adam 32, 106 | Wang, Yaonan 149 | | Vinhas, Adriano179 | Wang, Yuanda197 | | Vitiello, Autilia 32, 69, 146 | Wang, Yuping 32, 150 | | Vo, An 32, 154 | Wang, Zhaojun138 | | Wagner, Markus 129, 130 | Wang, Zhenkun 152 | | Wang, Bing 32, 157 | Wang, Zhiyuan 117 | | Wang, Chen-Shu 197 | Weir, Terence178 | | Wang, Cunze 182 | Wen, Chengxin33, 149 | | Wang, Dan189 | Wen, Junyi 158 | | Wang, Donghua 32, 173 | Wen, Liqun 159 | | Wang, Fengping 135 | Wenceslau Filho, Moésio127 | | Wang, Gai-Ge 184 | Wies, Matthias181 | | | Wilson, Mayu 194 | | Witkowski, Olaf | 172 | Yang, Yixuan 195 | |----------------------------------|----------------|---------------------------------| | Wong, Man Leung | 33, 126, 158 | Yang, Zexuan 173 | | Wong, Melvin | | Yang, Zhenhua182 | | Wu, Ching-Hsuan | 146 | Yao, Lianjie 142 | | Wu, Haofeng | 166 | Yao, Wen | | Wu, Kun-Min | 146 | Yao, Xin | | Wu, Peng | 134 | Yao, Yiming130 | | Wu, WeiDong | 179 | Yatsu, Naoya 121, 163 | | Wu, Xilei | 150 | Yazdani, Danial | | Wu, Xunfeng | 173 | Ye, Xinggui117 | | Wu, Yue | 33, 139, 153 | Ye, Yujian171 | | Xia, Qiqi | 182 | Yen, Gary101 | | Xia, Yufeng | 167 | Yi, Wenjie 133 | | Xiao, Min | 182 | Yi, Zhang170 | | Xie, Haoran | 126 | YiHeng, Chen 182 | | Xie, Lele | 117 | Ying, Ming-You169 | | Xie, Zongchao | 159, 166 | Young, Alvin146 | | Xu, Biao | 138 | Yu qing, Zhang34, 182 | | Xu, Jinglue | 152 | Yu, Hua34, 153 | | Xu, Jizhong | 129 | Yu, Kunjie 34, 64, 167, 181 | | Xu, Meiling | 182 | Yu, Mingyuan181 | | Xu, Te | 168 | Yu, Tian-Li129 | | Xue, Bing8, 15, 72, 87, 90, 93, | 101, 103, 117, | Yu, Wing Kwan 189 | | 120, 129, 151, 164, 173, 19 | 1, 197 | Yuan, Xin197 | | Xue, Xiaoming | 33, 153, 197 | Yuan, Yuan154 | | Xue, Yu | 151 | Yue, Caitong 64, 149, 167, 181 | | Yamaguchi, Tatsuya | 155 | Zaldivar, Daniel127 | | Yamaoka, Hisatoshi | 169 | Zambrano-Gutierrez, Daniel 34 | | Yan, Haowen | 196 | Zanin, Max 133 | | Yan, Xueming | | Zanjani Miyandoab, Sevil 155 | | Yang, Cuie | 33, 166, 197 | Zapotecas-Martínez, Saúl149 | | Yang, Haichuan | 179 | Zarco, Carmen127 | | Yang, Jiacheng | 197 | Zhai, Zhaomin135 | | Yang, Lei | 167 | Zhan, Zhi-Hui 34, 164, 165, 170 | | Yang, Ning | 150 | Zhang, Chuanji168 | | Yang, Peng | 182 | Zhang, Dezheng 167, 181 | | Yang, Qiang | 171 | Zhang, Fangfang34, 100, 183 | | Yang, Qi-Te | 33, 164 | Zhang, Hanyu 168 | | Yang, Rui | 197 | Zhang, Huayan 34, 149 | | Yang, Sen | 126, 158 | Zhang, Jiajia159 | | Yang, Shangshang | 22 121 | Zhang, Jinxin135 | | | 33, 121 | 2.10.10) 3.11.2.1 | | Yang, Shanshan | | Zhang, Jun 164, 165, 170 | | Yang, Shanshan<br>Yang, Xiaoying | 135 | _ | | Zhang, Mengjie7, 15, 51, 72, 90, 93, 100, | Zhang, Zeqi | 158 | |-------------------------------------------|------------------|----------| | 101, 103, 117, 120, 129, 155, 162, 164, | Zhang, Zhao | 197 | | 173, 178, 183 | Zhang, Zhongneng | 167 | | Zhang, Mingyue197 | Zhao, J | 117 | | Zhang, Panpan121 | Zhao, Kaili | 166 | | Zhang, Qiang 153 | Zhao, Lian | 173 | | Zhang, Qingfu 91, 97, 130, 150, 152, 158, | Zheng, Ruihao | 152 | | 178 | Zheng, Zhiqiang | 153 | | Zhang, Qingquan158 | Zhong, Jinghui | 35, 164 | | Zhang, Shuaixiang195 | Zhong, Muyao | 35, 182 | | Zhang, Shun117 | Zhou, Aimin | 168 | | Zhang, Tuo34, 173 | Zhou, Jin | 172 | | Zhang, Wei 34, 135 | Zhou, Weien | 167 | | Zhang, Xiaoming117 | Zhou, Yao | 170 | | Zhang, Xiaoqun168 | Zhou, Youhua | 196 | | Zhang, Xingyi 34, 121, 142, 183 | Zhou, Yu | 35, 184 | | Zhang, Xinzhi 173 | Zhou, Yuyang | 151 | | Zhang, Xuerui 34, 117 | Zhu, Luyao | 183 | | Zhang, Yajie 142 | Zhu, Qinghui | 183 | | Zhang, Yang34, 198 | Zhu, Qingling | 136, 197 | | Zhang, Yixia 151 | Zhu, Shuwei | 198 | | Zhang, Yong179 | Zhu, Xiao Xiang | 146 | | Zhang, Yukun135 | Zhu, Xiaodong | 183 | | Zhang, Yuxin179 | Zhu, Zexuan | 139, 197 | | Zhang. Yuze 34. 173 | Zhuang, Jiafan | 138 |